A modification of WKB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {WKB}$$\end{document} method for fractional differential operators of Schrödinger’s type

被引:0
作者
K. Sayevand
K. Pichaghchi
机构
[1] Malayer University,Faculty of Mathematical Sciences
关键词
approximation; Exact ; analysis; Schrödinger equation; Local fractional derivative; Mittag-Leffler stability; 26A33; 34E20;
D O I
10.1007/s13324-016-0143-7
中图分类号
学科分类号
摘要
In this paper, we were concerned with the description of the singularly perturbed differential equations within the scope of fractional calculus. However, we shall note that one of the main methods used to solve these problems is the so-called WKB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {WKB}$$\end{document} method. We should mention that this was not achievable via the existing fractional derivative definitions, because they do not obey the chain rule. In order to accommodate the WKB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {WKB}$$\end{document} to the scope of fractional derivative, we proposed a relatively new derivative called the local fractional derivative. By use of properties of local fractional derivative, we extend the WKB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {WKB}$$\end{document} method in the scope of the fractional differential equation. By means of this extension, the WKB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {WKB}$$\end{document} analysis based on the Borel resummation, for fractional differential operators of WKB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {WKB}$$\end{document} type are investigated. The convergence and the Mittag-Leffler stability of the proposed approach is proven. The obtained results are in excellent agreement with the existing ones in open literature and it is shown that the present approach is very effective and accurate. Furthermore, we are mainly interested to construct the solution of fractional Schrödinger equation in the Mittag-Leffler form and how it leads naturally to this semi-classical approximation namely modified WKB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {WKB}$$\end{document}.
引用
收藏
页码:291 / 318
页数:27
相关论文
共 51 条
  • [1] Sayevand K(2015)Successive approximation: a survey on stable manifold of fractional differential systems Fract. Calculus Appl. Anal. 18 621-641
  • [2] Pichaghchi K(2015)Analytical treatment of Volterra integro-differential equations of fractional order Appl. Math. Model. 39 4330-4336
  • [3] Sayevand K(2003)Quantization of Christ-Lee model using the WKB approximation Int. J. Theor. Phys. 42 20-97
  • [4] Rabei EM(2002)Quantization of constrained systems using the WKB approximation Phys. Rev. A 66 024-101
  • [5] Rabei EM(2005)Quantization of reparameterizatized systems using the WKB method Tur. J. Phys. 29 151-162
  • [6] Nawafleh KI(2005)Quantization of second-order constrained Lagrangians systems using the WKB approximation Int. J. Geom. Methods Mod. Phys. 2 485-504
  • [7] Ghassib HB(2004)Quantization of higher-order constrained Lagrangian systems using the WKB approximation Int. J. Theor. Phys. 43 22-85
  • [8] Rabei EM(2009)Fractional WKB approximation Nonlinear Dyn. 57 171-175
  • [9] Nawafleh KI(2010)Quantization of fractional systems using WKB approximation Commun. Nonlinear Sci. Numer. Simulat. 15 807-811
  • [10] Ghassib HB(2011)Local fractional integral transforms Prog. Nonlinear Sci. 4 1-225