Parallel Multi-Block ADMM with o(1 / k) Convergence

被引:1
作者
Wei Deng
Ming-Jun Lai
Zhimin Peng
Wotao Yin
机构
[1] Rice University,Department of Computational and Applied Mathematics
[2] University of Georgia,Department of Mathematics
[3] University of California,Department of Mathematics
来源
Journal of Scientific Computing | 2017年 / 71卷
关键词
Alternating direction method of multipliers; ADMM; Parallel and distributed computing; Convergence rate;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: minimizef1(x1)+⋯+fN(xN)subject toA1x1+⋯+ANxN=c,x1∈X1,…,xN∈XN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text {minimize} ~~&f_1(\mathbf{x}_1) + \cdots + f_N(\mathbf{x}_N)\\ \text {subject to}~~&A_1 \mathbf{x}_1 ~+ \cdots + A_N\mathbf{x}_N =c,\\&\mathbf{x}_1\in {\mathcal {X}}_1,~\ldots , ~\mathbf{x}_N\in {\mathcal {X}}_N, \end{aligned}$$\end{document}where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 2$$\end{document}, fi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_i$$\end{document} are convex functions, Ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_i$$\end{document} are matrices, and Xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}_i$$\end{document} are feasible sets for variable xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x}_i$$\end{document}. Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices Ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_i$$\end{document} are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices Ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_i$$\end{document}). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that ‖xk+1-xk‖M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert {\mathbf {x}}^{k+1} - {\mathbf {x}}^k\Vert _M^2$$\end{document} converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
引用
收藏
页码:712 / 736
页数:24
相关论文
共 65 条
  • [1] Boyd S(2011)Distributed optimization and statistical learning via the alternating direction method of multipliers Found. Trends Mach. Learn. 3 1-122
  • [2] Parikh N(2012)Latent variable graphical model selection via convex optimization Ann. Stat. 40 1935-1967
  • [3] Chu E(2016)The direct extension of admm for multi-block convex minimization problems is not necessarily convergent Math. Program. 155 57-79
  • [4] Peleato B(2013)On the convergence analysis of the alternating direction method of multipliers with three blocks Abstr. Appl. Anal. 2013 183961-101
  • [5] Eckstein J(1994)A proximal-based decomposition method for convex minimization problems Math. Program. 64 81-1638
  • [6] Chandrasekaran V(2014)A generalized proximal point algorithm and its convergence rate SIAM J. Optim. 24 1614-916
  • [7] Parrilo PA(2016)On the global and linear convergence of the generalized alternating direction method of multipliers J. Sci. Comput. 66 889-417
  • [8] Willsky AS(1963)Generalized lagrange multiplier method for solving problems of optimum allocation of resources Oper. Res. 11 399-40
  • [9] Chen C(1976)A dual algorithm for the solution of nonlinear variational problems via finite element approximation Comput. Math. Appl. 2 17-1623
  • [10] He BS(2014)Fast alternating direction optimization methods SIAM J. Imaging Sci. 7 1588-238