Just-in-time defect prediction for mobile applications: using shallow or deep learning?

被引:0
作者
Raymon van Dinter
Cagatay Catal
Görkem Giray
Bedir Tekinerdogan
机构
[1] Wageningen University & Research,Information Technology Group
[2] Sioux Technologies,Department of Computer Science and Engineering
[3] Qatar University,undefined
来源
Software Quality Journal | 2023年 / 31卷
关键词
Just-in-time defect prediction; Shallow learning; XGBoost; Deep learning; Imbalanced learning;
D O I
暂无
中图分类号
学科分类号
摘要
Just-in-time defect prediction (JITDP) research is increasingly focused on program changes instead of complete program modules within the context of continuous integration and continuous testing paradigm. Traditional machine learning-based defect prediction models have been built since the early 2000s, and recently, deep learning-based models have been designed and implemented. While deep learning (DL) algorithms can provide state-of-the-art performance in many application domains, they should be carefully selected and designed for a software engineering problem. In this research, we evaluate the performance of traditional machine learning algorithms and data sampling techniques for JITDP problems and compare the model performance with the performance of a DL-based prediction model. Experimental results demonstrated that DL algorithms leveraging sampling methods perform significantly worse than the decision tree-based ensemble method. The XGBoost-based model appears to be 116 times faster than the multilayer perceptron-based (MLP) prediction model. This study indicates that DL-based models are not always the optimal solution for software defect prediction, and thus, shallow, traditional machine learning can be preferred because of better performance in terms of accuracy and time parameters.
引用
收藏
页码:1281 / 1302
页数:21
相关论文
共 50 条
  • [21] An Empirical Study on Just-in-time Conformal Defect Prediction
    Shahini, Xhulja
    Metzger, Andreas
    Pohl, Klaus
    2024 IEEE/ACM 21ST INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES, MSR, 2024, : 88 - 99
  • [22] Deep Learning-Based Defect Prediction for Mobile Applications
    Jorayeva, Manzura
    Akbulut, Akhan
    Catal, Cagatay
    Mishra, Alok
    SENSORS, 2022, 22 (13)
  • [23] TLEL: A two-layer ensemble learning approach for just-in-time defect prediction
    Yang, Xinli
    Lo, David
    Xia, Xin
    Sun, Jianling
    INFORMATION AND SOFTWARE TECHNOLOGY, 2017, 87 : 206 - 220
  • [24] Improve cross-project just-in-time defect prediction with dynamic transfer learning
    Dai, Hongming
    Xi, Jianqing
    Dai, Hong-Liang
    JOURNAL OF SYSTEMS AND SOFTWARE, 2025, 219
  • [25] The Impact of Mislabeled Changes by SZZ on Just-in-Time Defect Prediction
    Fan, Yuanrui
    Xia, Xin
    da Costa, Daniel Alencar
    Lo, David
    Hassan, Ahmed E.
    Li, Shanping
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2021, 47 (08) : 1559 - 1586
  • [26] Interpretability application of the Just-in-Time software defect prediction model
    Zheng, Wei
    Shen, Tianren
    Chen, Xiang
    Deng, Peiran
    JOURNAL OF SYSTEMS AND SOFTWARE, 2022, 188
  • [27] Just-in-time defect prediction based on AST change embedding
    Zhuang, Weiyuan
    Wang, Hao
    Zhang, Xiaofang
    KNOWLEDGE-BASED SYSTEMS, 2022, 248
  • [28] Effort-aware cross-project just-in-time defect prediction framework for mobile apps
    Cheng, Tian
    Zhao, Kunsong
    Sun, Song
    Mateen, Muhammad
    Wen, Junhao
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (06)
  • [29] Effort-aware cross-project just-in-time defect prediction framework for mobile apps
    Tian CHENG
    Kunsong ZHAO
    Song SUN
    Muhammad MATEEN
    Junhao WEN
    Frontiers of Computer Science, 2022, 16 (06) : 19 - 33
  • [30] Effort-aware cross-project just-in-time defect prediction framework for mobile apps
    Tian Cheng
    Kunsong Zhao
    Song Sun
    Muhammad Mateen
    Junhao Wen
    Frontiers of Computer Science, 2022, 16