Wavelet Bases and Entropy Numbers of Hardy Operator
被引:0
|
作者:
M. G. Nasyrova
论文数: 0引用数: 0
h-index: 0
机构:Computing Center of the Far-Eastern Branch of the Russian Academy of Sciences,
M. G. Nasyrova
E. P. Ushakova
论文数: 0引用数: 0
h-index: 0
机构:Computing Center of the Far-Eastern Branch of the Russian Academy of Sciences,
E. P. Ushakova
机构:
[1] Computing Center of the Far-Eastern Branch of the Russian Academy of Sciences,
[2] Peoples’ Friendship University of Russia,undefined
来源:
Analysis Mathematica
|
2018年
/
44卷
关键词:
wavelet basis;
weighted function space;
Hardy integral operator;
entropy number;
primary;
secondary 47G10;
47B06;
42C40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We obtain upper estimates of the entropy numbers of a compact Hardy integral operator in weighted spaces of Besov–Triebel–Lizorkin type with small smoothness parameters.