AntEpiSeeker: Detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm

被引:103
作者
Wang Y. [1 ,2 ]
Liu X. [1 ,2 ]
Robbins K. [1 ]
Rekaya R. [1 ,2 ,3 ]
机构
[1] Department of Animal and Dairy Science, University of Georgia, Athens
[2] Institute of Bioinformatics, University of Georgia, Athens
[3] Department of Statistics, University of Georgia, Athens
关键词
Epistatic Interaction; Large Scale Dataset; Pheromone Level; Multiple Genetic Variation; Bayesian Epistasis Association Mapping;
D O I
10.1186/1756-0500-3-117
中图分类号
学科分类号
摘要
Background. Epistatic interactions of multiple single nucleotide polymorphisms (SNPs) are now believed to affect individual susceptibility to common diseases. The detection of such interactions, however, is a challenging task in large scale association studies. Ant colony optimization (ACO) algorithms have been shown to be useful in detecting epistatic interactions. Findings. AntEpiSeeker, a new two-stage ant colony optimization algorithm, has been developed for detecting epistasis in a case-control design. Based on some practical epistatic models, AntEpiSeeker has performed very well. Conclusions. AntEpiSeeker is a powerful and efficient tool for large-scale association studies and can be downloaded from http://nce.ads.uga.edu/∼romdhane/ AntEpiSeeker/index.html. © 2010 Rekaya et al; licensee BioMed Central Ltd.
引用
收藏
相关论文
共 28 条
[1]  
Cordell H.J., Clayton D.G., Genetic association studies, Lancet, 366, pp. 1121-1131, (2005)
[2]  
Cordell H.J., Epistasis: What it means, what it doesn't mean, and statistical methods to detect it in humans, Hum Mol Genet, 11, pp. 2463-2468, (2002)
[3]  
Ritchie M.D., Hahn L.W., Roodi N., Bailey L.R., Dupont W.D., Parl F.F., Moore J.H., Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer, Am J Hum Genet, 69, pp. 138-147, (2001)
[4]  
Cho Y.M., Ritchie M.D., Moore J.H., Park J.Y., Lee K.U., Shin H.D., Lee H.K., Park K.S., Multifactor-dimensionality reduction shows a two-locus interaction associated with type 2 diabetes mellitus, Diabetologia, 47, pp. 549-554, (2004)
[5]  
Tsai C.T., Lai L.P., Lin J.L., Chiang F.T., Hwang J.J., Ritchie M.D., Moore J.H., Hsu K.L., Tseng C.D., Liau C.S., Tseng Y.Z., Renin-angiotensin system gene polymorphisms and atrial fibrillation, Circulation, 109, pp. 1640-1646, (2004)
[6]  
Nelson M.R., Kardia S.L., Ferrell R.E., Sing C.F., A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation, Genome Res, 11, pp. 458-470, (2001)
[7]  
Culverhouse R., Klein T., Shannon W., Detecting epistatic interactions contributing to quantitative traits, Genet Epidemiol, 27, pp. 141-152, (2004)
[8]  
Millstein J., Conti D.V., Gilliland F.D., Gauderman W.J., A testing framework for identifying susceptibility genes in the presence of epistasis, Am J Hum Genet, 78, pp. 15-27, (2006)
[9]  
Zeng T., Wang H., Lo S.H., Backward genotype-trait association (BGTA) - Based dissection of complex traits in case-control design, Hum Hered, 62, pp. 196-212, (2006)
[10]  
Klein R.J., Zeiss C., Chew E.Y., Tsai J.Y., Sackler R.S., Haynes C., Henning A.K., Sangiovanni J.P., Mane S.M., Mayne S.T., Et al., Complement factor H polymorphism in age-related macular degeneration, Science, 308, pp. 385-389, (2005)