Existence of Sign-Changing Solutions for a Nonlocal Problem of p-Kirchhoff Type

被引:0
作者
S. H. Rasouli
H. Fani
S. Khademloo
机构
[1] Babol Noshirvani University of Technology,Department of Mathematics, Faculty of Basic Sciences
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
-Kirchhoff-type equations; sign-changing solutions; deformation lemma; degree theory; 35J50; 35J60; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
This work is devoted to study the existence of sign-changing solutions to nonlocal problems involving the p-Laplacian. Our approach is based on the variational method and quantitative deformation lemma.
引用
收藏
相关论文
共 15 条
[1]  
Crandall MG(1971)Bifurcation from simple eigenvalues J. Funct. Anal. 8 321-340
[2]  
Rabinowitz PH(2015)Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in J. Funct. Anal. 269 3500-3527
[3]  
Deng Y(2016)Existence and concentration of ground state solutions for a Kirchhoff type problem Electron. J. Differ. Equ. 2016 1-18
[4]  
Peng S(2015)Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents J. Math. Anal. Appl 421 521-538
[5]  
Shuai W(2015)Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains J. Math. Anal. Appl. 432 965-982
[6]  
Fan H(2015)Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains J. Differ. Equ. 259 1256-1274
[7]  
Lei CY(2015)Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schr Z. Angew. Math. Phys. 66 3267-3282
[8]  
Liao JF(2014)dinger-Poisson system in J. Differ. Equ. 256 1771-1792
[9]  
Tang CL(undefined)Ground state solutions for an indefinite Kirchhoff type problem with steep potential well undefined undefined undefined-undefined
[10]  
Lu SS(undefined)undefined undefined undefined undefined-undefined