Extension of primal-dual interior point algorithms to symmetric cones

被引:0
作者
S.H. Schmieta
F. Alizadeh
机构
[1] Axioma Inc.,
[2] Marietta,undefined
[3] GA USA 30068,undefined
[4] e-mail: sschmieta@axiomainc.com,undefined
[5] RUTCOR and School of Business,undefined
[6] Rutgers University,undefined
[7] Piscataway,undefined
[8] NJ USA 08854-8003,undefined
[9] e-mail: alizadeh@rutcor.rutgers.edu,undefined
来源
Mathematical Programming | 2003年 / 96卷
关键词
Interior Point; Jordan Algebra; Semidefinite Programming; Symmetric Cone; Euclidean Jordan Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
 In this paper we show that the so-called commutative class of primal-dual interior point algorithms which were designed by Monteiro and Zhang for semidefinite programming extends word-for-word to optimization problems over all symmetric cones. The machinery of Euclidean Jordan algebras is used to carry out this extension. Unlike some non-commutative algorithms such as the XS+SX method, this class of extensions does not use concepts outside of the Euclidean Jordan algebras. In particular no assumption is made about representability of the underlying Jordan algebra. As a special case, we prove polynomial iteration complexities for variants of the short-, semi-long-, and long-step path-following algorithms using the Nesterov-Todd, XS, or SX directions.
引用
收藏
页码:409 / 438
页数:29
相关论文
共 50 条
  • [41] A New Wide Neighborhood Primal–Dual Infeasible-Interior-Point Method for Symmetric Cone Programming
    Hongwei Liu
    Ximei Yang
    Changhe Liu
    Journal of Optimization Theory and Applications, 2013, 158 : 796 - 815
  • [42] An Infeasible Interior Point Method for Linear Complementarity Problems over Symmetric Cones
    Potra, Florian A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1403 - 1406
  • [43] Primal-dual affine-scaling algorithms fail for semidefinite programming
    Muramatsu, M
    Vanderbei, RJ
    MATHEMATICS OF OPERATIONS RESEARCH, 1999, 24 (01) : 149 - 175
  • [44] Polynomial convergence of a new family of primal-dual algorithms for semidefinite programming
    Monteiro, RDC
    Tsuchiya, T
    SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (03) : 551 - 577
  • [45] Extension of smoothing Newton algorithms to solve linear programming over symmetric cones
    Zhenghai Huang
    Xiaohong Liu
    Journal of Systems Science and Complexity, 2011, 24 : 195 - 206
  • [46] EXTENSION OF SMOOTHING NEWTON ALGORITHMS TO SOLVE LINEAR PROGRAMMING OVER SYMMETRIC CONES
    Huang, Zhenghai
    Liu, Xiaohong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (01) : 195 - 206
  • [47] Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming
    Luo, ZQ
    Sturm, JF
    Zhang, SZ
    SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (01) : 59 - 81
  • [48] A New Infeasible-Interior-Point Algorithm for Linear Programming over Symmetric Cones
    Chang-he LIU
    You-lin SHANG
    Ping HAN
    Acta Mathematicae Applicatae Sinica, 2017, 33 (03) : 771 - 788
  • [49] A new infeasible-interior-point algorithm for linear programming over symmetric cones
    Liu, Chang-he
    Shang, You-lin
    Han, Ping
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (03): : 771 - 788
  • [50] A new infeasible-interior-point algorithm for linear programming over symmetric cones
    Chang-he Liu
    You-lin Shang
    Ping Han
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 771 - 788