A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations

被引:0
作者
Jin Xu
Dongbin Xiu
George Em Karniadakis
机构
[1] Brown University,Division of Applied Mathematics
来源
Journal of Scientific Computing | 2002年 / 17卷
关键词
direct numerical simulation; spectral elements; semi-Lagrangian schemes;
D O I
暂无
中图分类号
学科分类号
摘要
We present a semi-Lagrangian method for integrating the three-dimensional incompressible Navier–Stokes equations. We develop stable schemes of second-order accuracy in time and spectral accuracy in space. Specifically, we employ a spectral element (Jacobi) expansion in one direction and Fourier collocation in the other two directions. We demonstrate exponential convergence for this method, and investigate the non-monotonic behavior of the temporal error for an exact three-dimensional solution. We also present direct numerical simulations of a turbulent channel-flow, and demonstrate the stability of this approach even for marginal resolution unlike its Eulerian counterpart.
引用
收藏
页码:585 / 597
页数:12
相关论文
共 28 条
[1]  
Achdou Y.(2000)Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier–Stokes equations SIAM J. Numer. Anal. 37 799-undefined
[2]  
Guermond J. L.(1996)The cost-effectiveness of semi-Lagrangian advection Mon. Wea. Rev. 124 2883-undefined
[3]  
Bartello P.(1994)Effects of computational time step on numerical solutions of turbulent flow J. Comp. Phys. 113 1-undefined
[4]  
Thomas S. J.(1998)Convergence analysis for a class of high-order semi-Lagrangian advection schemes SIAM J. Numer. Anal. 35 909-undefined
[5]  
Choi H.(1998)The Lagrange-Galerkin spectral element method on unstructured quadrilateral grids J. Comput. Phys. 147 114-undefined
[6]  
Moin P.(1996)Spline-characteristic method for simulation of convective turbulence J. Comput. Phys. 123 466-undefined
[7]  
Falcone M.(1988)Reynolds-stress and dissipation-rate budgets in a turbulent channel flow J. Fluid Mech. 194 15-undefined
[8]  
Ferretti R.(1984)Accuracy of multi-upstream, semi-Lagrangian advective schemes Mon. Wea. Rev. 112 1267-undefined
[9]  
Giraldo F. X.(1987)Improving the estimate of the departure point position in a two-time level semi-Lagrangian and semi-Implicit scheme Mon. Wea. Rev. 115 737-undefined
[10]  
Malevsky A. V.(1993)Economical determination of departure points for semi-Lagrangian models Mon. Wea. Rev. 121 221-undefined