Denker–Sato type Markov chains on self-similar sets

被引:0
作者
Ka-Sing Lau
Xiang-Yang Wang
机构
[1] The Chinese University of Hong Kong,Department of Mathematics
[2] Sun Yat-Sen University,School of Mathematics and Computational Science
来源
Mathematische Zeitschrift | 2015年 / 280卷
关键词
Harmonic functions; Hyperbolic boundary; Iterated function system; Markov chain; Martin boundary; Self-similar sets; Primary 28A78; Secondary 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
In Denker and Sato (Potential Anal 14: 211–232, 2001; Publ RIMS 35: 769–794, 1999; Math Nachr 241: 32–55, 2002) studied certain Markov chain on the symbolic spaces of the Sierpinski gasket (SG). They showed that the Martin boundary is homeomorphic to SG, and used the potential theory on the Martin boundary to induce a harmonic structure on SG. In this paper, we consider a more general Denker–Sato type Markov chain associated with self-similar sets K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} with the open set condition. The chain is defined on the augmented tree of the symbolic space. Such tree was introduced by Kaimanovich, it is hyperbolic in the sense of Gromov (Kaimanovich in Random walks on Sierpiński graphs: hyperbolicity and stochastic homogenization, Birha̋user, Basel, 2003; Lau and Wang in Indiana Univ Math J 58:1777–1795, 2009). We show that the Martin boundary, the hyperbolic boundary and the self-similar set K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} are homeomorphic. The hitting distribution of the chain is also obtained.
引用
收藏
页码:401 / 420
页数:19
相关论文
共 26 条
  • [1] Denker M(2007)Dirichlet forms on quotients of shift spaces Colloq. Math. 107 57-80
  • [2] Imai A(2001)Sierpiǹski gasket as a Martin boundary I: Martin kernel Potential Anal. 14 211-232
  • [3] Koch S(1999)Sierpiǹski gasket as a Martin boundary II: the intrinsic metric Publ. RIMS 35 769-794
  • [4] Denker M(2002)Reflections on harmonic analysis of the Sierpiǹski gasket Math. Nachr. 241 32-55
  • [5] Sato H(1969)Boundary theory of Markov processes (the discrete case) Russ. Math. Surv. 24 1-42
  • [6] Denker M(2002)The difference between letters and a Martin kernel of a modulo 5 Markov chain Adv. Appl. Math. 28 82-106
  • [7] Sato H(2012)Post-critcally finite fractal and Martin boundary Trans. Am. Math. Soc. 364 103-118
  • [8] Denker M(1993)Harmonic calculus on p.c.f. self-similar sets Trans. Am. Math. Soc. 335 721-755
  • [9] Sato H(2010)Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees Adv. Math. 225 2674-2730
  • [10] Dynkin E(2012)Martin boundary and exit space on the Sierpinski gasket Sci. China Math. 55 475-494