Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean

被引:3
作者
Dao-Yi Gong
Dong Guo
Yongqi Gao
Jing Yang
Rui Mao
Jingxuan Qu
Miaoni Gao
Sang Li
Seong-Joong Kim
机构
[1] Beijing Normal University,State Key Laboratory of Earth Surface Processes and Resource Ecology
[2] Chinese Academy of Sciences,Climate Change Research Center
[3] IAP/CAS,Nansen
[4] Nansen Environmental and Remote Sensing Center/Bjerknes Center for Climate Research,Zhu International Research Center
[5] Korea Polar Research Institute,Division of Polar Climate Change
来源
Climate Dynamics | 2017年 / 48卷
关键词
Winter Arctic Oscillation; Summer SST; Tropical Indian Ocean; Prediction model;
D O I
暂无
中图分类号
学科分类号
摘要
The inter-annual relationship between the boreal winter Arctic Oscillation (AO) and summer sea surface temperature (SST) over the western tropical Indian Ocean (TIO) for the period from 1979 to 2015 is investigated. The results show that the January–February–March AO is significantly correlated with the June–July–August SST and SST tendency. When both El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) variance are excluded, the winter AO is significantly correlated with the regional mean SST of the western TIO (40∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}–60∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$60^\circ$$\end{document}E and 10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^\circ$$\end{document}S–10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^\circ$$\end{document}N), r=0.71\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.71$$\end{document}. The multi-month SST tendency, i.e., the SST difference of June–July–August minus April–May, is correlated with the winter AO at r=0.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.75$$\end{document}. Composite analysis indicates similar warming over the western TIO. Two statistical models are established to predict the subsequent summer’s SST and SST tendency. The models use the winter AO, the winter ENSO and the autumn-winter IOD indexes as predictors and explain 65 and 62 % of the variance of the subsequent summer’s SST and SST tendency, respectively. Investigation of the regional air–sea fluxes and oceanic dynamics reveals that the net surface heat flux cannot account for the warming, whereas the oceanic Rossby wave plays a predominant role. During positive AO winters, the enhanced Arabian High causes stronger northern winds in the northern Indian Ocean and leads to anomalous cross-equatorial air-flow. The Ekman pumping in association with the anomalous wind stress curl in the central TIO generates a significantly deeper thermocline and above-normal sea surface height at 60∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}–75∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}E and 5∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}–10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^\circ$$\end{document}S. The winter AO-forced Rossby wave propagates westward and arrives at the western coast in summer, resulting in the significant SST increase. Forced by the observed winter AO-related wind stress anomalies over the Indian Ocean, the ocean model reasonably reproduces the Rossby wave as well as the resulting surface ocean warming over the western TIO in the subsequent summer. Observational analysis and numerical experiments suggest the importance of the oceanic dynamics in connecting the winter AO and summer SST anomalies.
引用
收藏
页码:2471 / 2488
页数:17
相关论文
共 36 条
[31]   Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system [J].
J. S. Chowdary ;
H. S. Chaudhari ;
C. Gnanaseelan ;
Anant Parekh ;
A. Suryachandra Rao ;
P. Sreenivas ;
S. Pokhrel ;
P. Singh .
Climate Dynamics, 2014, 42 :1925-1947
[32]   Seasonality in the ENSO-Independent Influence of Tropical Indian Ocean Sea Surface Temperature Anomalies on Western North Pacific Tropical Cyclone Genesis [J].
Song, Jinjie ;
Klotzbach, Philip J. ;
Wang, Yi-Fan ;
Duan, Yihong .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2025, 103 (02) :257-278
[33]   Impact of upper ocean processes and air-sea fluxes on seasonal SST biases over the tropical Indian Ocean in the NCEP Climate Forecasting System [J].
Chowdary, Jasti S. ;
Parekh, Anant ;
Ojha, Sayantani ;
Gnanaseelan, C. ;
Kakatkar, Rashmi .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2016, 36 (01) :188-207
[34]   Isolated Effects of Indian Ocean Basin-Wide and El Nino-Southern Oscillation on Austral Winter Rainfall over South America [J].
Kayano, Mary T. ;
Ceron, Wilmar L. ;
Andreoli, Rita V. ;
Souza, Rodrigo A. F. ;
Souza, Itamara P. .
ATMOSPHERE, 2021, 12 (12)
[35]   The Role of the Indian Ocean Basin-Wide and El Nino-Southern Oscillation Modes in Interannual Rainfall Variability over South America during Austral Summer [J].
Kayano, Mary T. ;
Andreoli, Rita, V ;
Ceron, Wilmar L. ;
Souza, Rodrigo A. F. .
ATMOSPHERE, 2021, 12 (09)
[36]   Summer and Autumn Insolation as the Pacemaker of Surface Wind and Precipitation Dynamics Over Tropical Indian Ocean During the Holocene: Insights From Paleoproductivity Records and Paleoclimate Simulations [J].
Zhou, Xinquan ;
Duchamp-Alphonse, Stephanie ;
Bassinot, Franck ;
Liu, Chuanlian .
PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2024, 39 (01)