Largest eigenvalue of a unicyclic mixed graph

被引:23
作者
Fan Y. [1 ,2 ]
机构
[1] Dept. of Math., Nanjing Normal Univ., Jiangsu
[2] Dept. of Math, Anhui Univ., Anhui
关键词
Laplacian eigenvalue; Mixed graph; Unicyclic graph;
D O I
10.1007/s11766-004-0047-4
中图分类号
学科分类号
摘要
The graphs which maximize and minimize respectively the largest eigenvalue over all unicyclic mixed graphs U on n vertices are determined. The unicyclic mixed graphs U with the largest eigenvalue λ1(U)=n or λ1(U)∈(n,n+1) are characterized. © 2004, Springer Verlag. All rights reserved.
引用
收藏
页码:140 / 148
页数:8
相关论文
共 22 条
[1]  
Anderson W.N., Morely T.D., Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra, 18, pp. 141-145, (1985)
[2]  
Bapat R.B., Grossman J.W., Kulkarni D.M., Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra, 46, pp. 299-312, (1999)
[3]  
Bapat R.B., Grossman J.W., Kulkarni D.M., Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra, 47, pp. 217-229, (2000)
[4]  
Beineke L.W., Wilson R.J., Selected Topics in Graph Theory, (1978)
[5]  
Bondy J.A., Murty U.S.R., Graph Theory with Applications, (1976)
[6]  
Yizheng F., On spectra integral variations of mixed graph, Linear Algebra Appl, 374, pp. 307-316, (2003)
[7]  
Fiedler M., Algebraic connectivity of graphs, Czechoslovak Math. J, 23, pp. 298-305, (1973)
[8]  
Fiedler M., A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J, 25, pp. 619-633, (1975)
[9]  
Grossman J.W., Kulkarni D.M., Schochetman I.E., Algebraic graph theory without orientations, Linear Algebra Appl, 212-213, pp. 289-308, (1994)
[10]  
Jiming G., Shangwang T., A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl, 325, pp. 71-74, (2001)