Normality Criteria of Meromorphic Functions Sharing a Holomorphic Function

被引:0
|
作者
Da-Wei Meng
Pei-Chu Hu
机构
[1] Xidian University,Department of Mathematics
[2] Shandong University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2015年 / 38卷
关键词
Meromorphic function; Holomorphic function; Normal family; Sharing holomorphic functions; 30D35; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
Take three integers m≥0,k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 0,\,k\ge 1$$\end{document}, and n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}. Let a(≢0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ (\not \equiv 0)$$\end{document} be a holomorphic function in a domain D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} such that multiplicities of zeros of a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document} are at most m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} and divisible by n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}. In this paper, we mainly obtain the following normality criterion: Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\fancyscript{F}}}}$$\end{document} be the family of meromorphic functions on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} such that multiplicities of zeros of each f∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {{\fancyscript{F}}}$$\end{document} are at least k+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+m$$\end{document} and such that multiplicities of poles of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} are at least m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+1$$\end{document}. If each pair (f,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f,g)$$\end{document} of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{F}}}$$\end{document} satisfies that fnf(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{n}f^{(k)}$$\end{document} and gng(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^{n}g^{(k)}$$\end{document} share a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document} (ignoring multiplicity), then F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{F}}}$$\end{document} is normal.
引用
收藏
页码:1331 / 1347
页数:16
相关论文
共 50 条
  • [31] Normal families of meromorphic functions sharing one function
    Ling Qiu
    FeiFei Hu
    Journal of Inequalities and Applications, 2013
  • [32] Normal families of meromorphic functions sharing one function
    Qiu, Ling
    Hu, FeiFei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [33] Normality and shared sets of meromorphic functions
    Lin, Guo-Bin
    Chen, Jun-Fan
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (06): : 1312 - 1316
  • [34] The Normality of Meromorphic Functions with Multiple Zeros and Poles Concerning Sharing Values
    Wang You-Ming
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (03): : 641 - 652
  • [35] Normality Criteria for Families of Meromorphic Function Concerning Shared Values
    Qi, Jianming
    Ding, Jie
    Yang, Lianzhong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (02) : 449 - 457
  • [36] Normal families of meromorphic functions sharing values or functions
    Jiang, Yunbo
    Gao, Zongsheng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [37] Normal families of meromorphic functions sharing values or functions
    Yunbo Jiang
    Zongsheng Gao
    Journal of Inequalities and Applications, 2011
  • [38] A note on normality of meromorphic functions
    Chang, Jianming
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2007, 83 (04) : 60 - 62
  • [39] SOME NORMAL CRITERIA FOR FAMILIES OF MEROMORPHIC FUNCTIONS
    Xiao, Bing
    Xiong, Weiling
    Yuan, Wenjun
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 725 - 736
  • [40] Meromorphic Functions Sharing a Small Function with their Differential Polynomials
    Zhang, Jilong
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (03): : 345 - 355