Changes in the membrane lipid composition of a Sulfurimonas species depend on the electron acceptor used for sulfur oxidation

被引:0
|
作者
Su Ding
Jan V. Henkel
Ellen C. Hopmans
Nicole J. Bale
Michel Koenen
Laura Villanueva
Jaap S. Sinninghe Damsté
机构
[1] NIOZ Royal Institute for Sea Research,Department of Bioscience, Center for Geomicrobiology
[2] Department of Marine Microbiology and Biogeochemistry,Biological Oceanography
[3] Aarhus University,Department of Earth Sciences, Faculty of Geosciences
[4] Leibniz Institute for Baltic Sea Research Warnemünde,undefined
[5] Utrecht University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Sulfurimonas species are among the most abundant sulfur-oxidizing bacteria in the marine environment. They are capable of using different electron acceptors, this metabolic flexibility is favorable for their niche adaptation in redoxclines. When oxygen is depleted, most Sulfurimonas spp. (e.g., Sulfurimonas gotlandica) use nitrate (NO3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathrm{NO}}}}}}}}_3^ -$$\end{document}) as an electron acceptor to oxidize sulfur, including sulfide (HS-), S0 and thiosulfate, for energy production. Candidatus Sulfurimonas marisnigri SoZ1 and Candidatus Sulfurimonas baltica GD2, recently isolated from the redoxclines of the Black Sea and Baltic Sea respectively, have been shown to use manganese dioxide (MnO2) rather than NO3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathrm{NO}}}}}}}}_3^ -$$\end{document} for sulfur oxidation. The use of different electron acceptors is also dependent on differences in the electron transport chains embedded in the cellular membrane, therefore changes in the membrane, including its lipid composition, are expected but are so far unexplored. Here, we used untargeted lipidomic analysis to reveal changes in the composition of the lipidomes of three representative Sulfurimonas species grown using either NO3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathrm{NO}}}}}}}}_3^ -$$\end{document} and MnO2. We found that all Sulfurimonas spp. produce a series of novel phosphatidyldiazoalkyl-diacylglycerol lipids. Ca. Sulfurimonas baltica GD2 adapts its membrane lipid composition depending on the electron acceptors it utilizes for growth and survival. When carrying out MnO2-dependent sulfur oxidation, the novel phosphatidyldiazoalkyl-diacylglycerol headgroup comprises shorter alkyl moieties than when sulfur oxidation is NO3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathrm{NO}}}}}}}}_3^ -$$\end{document}-dependent. This is the first report of membrane lipid adaptation when an organism is grown with different electron acceptors. We suggest novel diazoalkyl lipids have the potential to be used as a biomarker for different conditions in redox-stratified systems.
引用
收藏
相关论文
共 50 条
  • [42] Glucose erythrocyte transporter in women with breast cancer:: Changes in lipid composition of erythrocyte membrane
    Crespí, C
    Quevedo, S
    Roca, P
    Palou, A
    IUBMB LIFE, 1999, 48 (05) : 531 - 537
  • [43] INCREASED FETAL INSULIN-RECEPTORS AND CHANGES IN MEMBRANE FLUIDITY AND LIPID-COMPOSITION
    NEUFELD, ND
    CORBO, L
    AMERICAN JOURNAL OF PHYSIOLOGY, 1982, 243 (03): : E246 - E250
  • [44] Experimental Acute Pancreatitis Causes Pathologic Changes in Lysosomal Membrane Protein and Lipid Composition
    Mareninova, Olga A.
    Yakubov, Iskandar
    Jia, Wenzhuo
    Gukovsky, Ilya
    Gukovskaya, Anna S.
    GASTROENTEROLOGY, 2010, 138 (05) : S125 - S126
  • [45] ETHANOL-INDUCED CHANGES IN THE MEMBRANE LIPID-COMPOSITION OF CLOSTRIDIUM-THERMOCELLUM
    HERRERO, AA
    GOMEZ, RF
    ROBERTS, MF
    BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 693 (01) : 195 - 204
  • [46] Adherens junctions influence tight junction formation via changes in membrane lipid composition
    Shigetomi, Kenta
    Ono, Yumiko
    Inai, Tetsuichiro
    Ikenouchi, Junichi
    JOURNAL OF CELL BIOLOGY, 2018, 217 (07): : 2373 - 2381
  • [47] MEMBRANE LIPID CHANGES DURING FORMATION OF A FUNCTIONAL ELECTRON TRANSPORT SYSTEM IN STAPHYLOCOCCUS AUREUS
    FRERMAN, FE
    WHITE, DC
    JOURNAL OF BACTERIOLOGY, 1967, 94 (06) : 1868 - &
  • [48] CORRELATION BETWEEN CHANGES IN MEMBRANE LIPID-COMPOSITION INDUCED BY DIETARY-LIPID AND MEMBRANE-BOUND ENZYME-ACTIVITY IN CHICK LIVER
    ALEJANDRE, MJ
    GARCIAGONZALEZ, M
    SEGOVIA, JL
    BIOCHEMISTRY INTERNATIONAL, 1988, 17 (03): : 461 - 469
  • [49] Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts
    Li, QR
    Wang, M
    Tan, L
    Wang, C
    Ma, J
    Li, N
    Li, YS
    Xu, GW
    Li, JS
    JOURNAL OF LIPID RESEARCH, 2005, 46 (09) : 1904 - 1913
  • [50] Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants
    Monica De Palma
    Stefania Grillo
    Immacolata Massarelli
    Antonello Costa
    Gabor Balogh
    Laszlo Vigh
    Antonella Leone
    Molecular Breeding, 2008, 21 : 15 - 26