Changes in the membrane lipid composition of a Sulfurimonas species depend on the electron acceptor used for sulfur oxidation

被引:0
|
作者
Su Ding
Jan V. Henkel
Ellen C. Hopmans
Nicole J. Bale
Michel Koenen
Laura Villanueva
Jaap S. Sinninghe Damsté
机构
[1] NIOZ Royal Institute for Sea Research,Department of Bioscience, Center for Geomicrobiology
[2] Department of Marine Microbiology and Biogeochemistry,Biological Oceanography
[3] Aarhus University,Department of Earth Sciences, Faculty of Geosciences
[4] Leibniz Institute for Baltic Sea Research Warnemünde,undefined
[5] Utrecht University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Sulfurimonas species are among the most abundant sulfur-oxidizing bacteria in the marine environment. They are capable of using different electron acceptors, this metabolic flexibility is favorable for their niche adaptation in redoxclines. When oxygen is depleted, most Sulfurimonas spp. (e.g., Sulfurimonas gotlandica) use nitrate (NO3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathrm{NO}}}}}}}}_3^ -$$\end{document}) as an electron acceptor to oxidize sulfur, including sulfide (HS-), S0 and thiosulfate, for energy production. Candidatus Sulfurimonas marisnigri SoZ1 and Candidatus Sulfurimonas baltica GD2, recently isolated from the redoxclines of the Black Sea and Baltic Sea respectively, have been shown to use manganese dioxide (MnO2) rather than NO3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathrm{NO}}}}}}}}_3^ -$$\end{document} for sulfur oxidation. The use of different electron acceptors is also dependent on differences in the electron transport chains embedded in the cellular membrane, therefore changes in the membrane, including its lipid composition, are expected but are so far unexplored. Here, we used untargeted lipidomic analysis to reveal changes in the composition of the lipidomes of three representative Sulfurimonas species grown using either NO3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathrm{NO}}}}}}}}_3^ -$$\end{document} and MnO2. We found that all Sulfurimonas spp. produce a series of novel phosphatidyldiazoalkyl-diacylglycerol lipids. Ca. Sulfurimonas baltica GD2 adapts its membrane lipid composition depending on the electron acceptors it utilizes for growth and survival. When carrying out MnO2-dependent sulfur oxidation, the novel phosphatidyldiazoalkyl-diacylglycerol headgroup comprises shorter alkyl moieties than when sulfur oxidation is NO3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathrm{NO}}}}}}}}_3^ -$$\end{document}-dependent. This is the first report of membrane lipid adaptation when an organism is grown with different electron acceptors. We suggest novel diazoalkyl lipids have the potential to be used as a biomarker for different conditions in redox-stratified systems.
引用
收藏
相关论文
共 50 条
  • [21] DEVELOPMENT CHANGES IN HEPATIC BASOLATERAL MEMBRANE FLUIDITY AND LIPID-COMPOSITION
    NOVAK, D
    RAY, W
    CARVER, J
    GROSSMAN, S
    HEPATOLOGY, 1989, 10 (04) : 593 - 593
  • [22] Changes of nuclear membrane lipid composition affect RNA nucleocytoplasmic transport
    Tomassoni, ML
    Amori, D
    Magni, MV
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 258 (02) : 476 - 481
  • [23] Rod outer segment disk and plasma membrane lipid composition and state of oxidation
    Sinha, SK
    Lamba, OP
    Borchman, D
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1997, 38 (04) : 1535 - 1535
  • [24] REGULATION OF ALLOSTERIC MEMBRANE-BOUND ENZYMES THROUGH CHANGES IN MEMBRANE LIPID-COMPOSITION
    FARIAS, RN
    BLOJ, B
    MORERO, RD
    SINERIZ, F
    TRUCCO, RE
    BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 415 (02) : 231 - 251
  • [25] XENOBIOTIC INDUCED CHANGES IN MEMBRANE LIPID-COMPOSITION - EFFECTS ON PLASMA-MEMBRANE ATPASES
    COOKE, DT
    BURDEN, RS
    CLARKSON, DT
    JAMES, CS
    MECHANISMS AND REGULATION OF TRANSPORT PROCESSES, 1989, 18 : 41 - 53
  • [26] Subtle Changes in Lipid Environment Have Profound Effects on Membrane Oxidation Chemistry
    Zhang, Xinxing
    Barraza, Kevin M.
    Upton, Kathleen T.
    Beauchamp, J. L.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (50) : 17492 - 17498
  • [27] FATTY-ACID AND LIPID-COMPOSITION OF 10 SPECIES OF MICROALGAE USED IN MARICULTURE
    VOLKMAN, JK
    JEFFREY, SW
    NICHOLS, PD
    ROGERS, GI
    GARLAND, CD
    JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 1989, 128 (03) : 219 - 240
  • [28] Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster
    Overgaard, J
    Sorensen, JG
    Petersen, SO
    Loeschcke, V
    Holmstrup, M
    JOURNAL OF INSECT PHYSIOLOGY, 2005, 51 (11) : 1173 - 1182
  • [29] DEVELOPMENTAL-CHANGES IN HEPATIC BASOLATERAL MEMBRANE LIPID-COMPOSITION AND FLUIDITY
    NOVAK, D
    RAY, W
    CARVER, J
    GROSSMAN, S
    BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1111 (01) : 59 - 64
  • [30] Changes in Membrane Lipid Composition and Function Accompanying Chilling Injury in Bell Peppers
    Kong, Ximan
    Wei, Baodong
    Gao, Zhu
    Zhou, Ying
    Shi, Fei
    Zhou, Xin
    Zhou, Qian
    Ji, Shujuan
    PLANT AND CELL PHYSIOLOGY, 2018, 59 (01) : 167 - 178