Integration-by-parts identities and differential equations for parametrised Feynman integrals

被引:5
作者
Artico, Daniele [1 ]
Magnea, Lorenzo [2 ,3 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy
[3] INFN, Sez Torino, Via Pietro Giuria 1, I-10125 Turin, Italy
关键词
Higher-Order Perturbative Calculations; Scattering Amplitudes; Factorization; Renormalization Group; MONODROMY RINGS; MASTER INTEGRALS; CANONICAL BASIS; GRAPH; EPSILON; SERIES; TOOL;
D O I
10.1007/JHEP03(2024)096
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Integration-by-parts (IBP) identities and differential equations are the primary modern tools for the evaluation of high-order Feynman integrals. They are commonly derived and implemented in the momentum-space representation. We provide a different viewpoint on these important tools by working in Feynman-parameter space, and using its projective geometry. Our work is based upon little-known results pre-dating the modern era of loop calculations [16-19, 30, 31]: we adapt and generalise these results, deriving a very general expression for sets of IBP identities in parameter space, associated with a generic Feynman diagram, and valid to any loop order, relying on the characterisation of Feynman-parameter integrands as projective forms. We validate our method by deriving and solving systems of differential equations for several simple diagrams at one and two loops, providing a unified perspective on a number of existing results.
引用
收藏
页数:35
相关论文
共 86 条
[21]   Feynman integrals in dimensional regularization and extensions of Calabi-Yau motives [J].
Bonisch, Kilian ;
Duhr, Claude ;
Fischbach, Fabian ;
Klemm, Albrecht ;
Nega, Christoph .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
[22]   Tropical Feynman integration in the Minkowski regime [J].
Borinsky, Michael ;
Munch, Henrik J. ;
Tellander, Felix .
COMPUTER PHYSICS COMMUNICATIONS, 2023, 292
[23]   Tropical Monte Carlo quadrature for Feynman integrals [J].
Borinsky, Michael .
ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (04) :635-685
[24]   Sequential discontinuities of Feynman integrals and the monodromy group [J].
Bourjaily, Jacob L. ;
Hannesdottir, Holmfridur ;
McLeod, Andrew J. ;
Schwartz, Matthew D. ;
Vergu, Cristian .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
[25]   Bounded Collection of Feynman Integral Calabi-Yau Geometries [J].
Bourjaily, Jacob L. ;
McLeod, Andrew J. ;
von Hippel, Matt ;
Wilhelm, Matthias .
PHYSICAL REVIEW LETTERS, 2019, 122 (03)
[26]   Generalized Cuts of Feynman Integrals in Parameter Space [J].
Britto, Ruth .
PHYSICAL REVIEW LETTERS, 2023, 131 (09)
[27]   2-LOOP 2-POINT FUNCTIONS WITH MASSES - ASYMPTOTIC EXPANSIONS AND TAYLOR-SERIES, IN ANY DIMENSION [J].
BROADHURST, DJ ;
FLEISCHER, J ;
TARASOV, OV .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 60 (02) :287-301
[28]   Meromorphic modular forms and the three-loop equal-mass banana integral [J].
Broedel, Johannes ;
Duhr, Claude ;
Matthes, Nils .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
[29]   An analytic solution for the equal-mass banana graph [J].
Broedel, Johannes ;
Duhr, Claude ;
Dulat, Falko ;
Marzucca, Robin ;
Penante, Brenda ;
Tancredi, Lorenzo .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (09)
[30]   Elliptic Feynman integrals and pure functions [J].
Broedel, Johannes ;
Duhr, Claude ;
Dulat, Falko ;
Penante, Brenda ;
Tancredi, Lorenzo .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)