The parameters governing the coefficient of dispersion of cubes in rotating cylinders

被引:0
作者
G. Lu
J. R. Third
C. R. Müller
机构
[1] ETH Zürich,Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Institute of Energy Technology
来源
Granular Matter | 2017年 / 19卷
关键词
Granular flow; Non-spherical particle; Axial dispersion; Rotating cylinder; Discrete element modelling (DEM);
D O I
暂无
中图分类号
学科分类号
摘要
Axial dispersion of cubic particles in horizontal, rotating cylinders was investigated using discrete element modelling simulations. We found that, similar to the behavior of spheres, the axial dispersion coefficient of cubes depends on (1) the rotational speed of the cylinder ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega }$$\end{document}, (2) the acceleration due to gravity g and (3) the particle size d, satisfying the relationship Dax∝ω1-2λgλd2-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_\mathrm {ax}\propto {\omega }^{1-2{\lambda }}{g}^{{\lambda }}{d}^{2-{\lambda }}$$\end{document} with λ≈0.15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }\approx 0.15$$\end{document} (λ≈0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }\approx 0.1$$\end{document} for beds of spheres) (Third et al. in Powder Technol 203:510–517, 2010). This observation suggested that, although particle shape influences significantly the rate of axial dispersion (cubes disperse almost twice as fast as spheres of equal volume), the parameters controlling the coefficient of dispersion are independent of particle shape.
引用
收藏
相关论文
共 62 条
[1]  
Christov IC(2012)Resolving a paradox of anomalous scalings in the diffusion of granular materials Proc. Natl. Acad. Sci. USA 109 16012-undefined
[2]  
Stone HA(2012)A review of the residence time distribution (RTD) applications in solid unit operations Powder Technol. 228 416-undefined
[3]  
Gao YJ(2011)Complexity, segregation, and pattern formation in rotating-drum flows Rev. Mod. Phys. 83 1323-undefined
[4]  
Muzzio FJ(1997)Positron emission particle tracking studies of spherical particle motion in rotating drums Chem. Eng. Sci. 52 2011-undefined
[5]  
Ierapetritou MG(2010)Axial dispersion of granular material in horizontal rotating cylinders Powder Technol. 203 510-undefined
[6]  
Seiden G(2015)Experimental investigation of axial dispersion in a horizontal rotating cylinder Granul. Matter 17 43-undefined
[7]  
Thomas PJ(2005)Subdiffusive axial transport of granular materials in a long drum mixer Phys. Rev. Lett. 94 048002-undefined
[8]  
Parker DJ(2006)Diffusion of a granular pulse in a rotating drum Phys. Rev. E 73 041301-undefined
[9]  
Dijkstra AE(2013)Granular materials composed of shape-anisotropic grains Soft Matter 9 7401-undefined
[10]  
Martin TW(2015)Discrete element models for non-spherical particle systems: from theoretical developments to applications Chem. Eng. Sci. 127 425-undefined