Direct sum decompositions of projective and injective modules into virtually uniserial modules

被引:0
作者
M. Behboodi
A. Moradzadeh-Dehkordi
M. Qourchi Nejadi
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] University of Isfahan,Department of Science, Shahreza Campus
[3] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Virtually uniserial module; Uniserial module; Projective module; Injective module; primary 16D70; 16D60; secondary 13A18; 13F30;
D O I
暂无
中图分类号
学科分类号
摘要
A theorem due to Warfield states that “a ring R is left serial if and only if every (finitely generated) projective left R-module is serial” and a theorem due to Tuganbaev states that “a ring R is a finite direct product of uniserial Noetherian rings if and only if R is left duo, and all injective left R-modules are serial”. Most recently, in our previous paper [Virtually uniserial modules and rings, J Algebra 549:365–385, 2020], we introduced and studied the concept of virtually uniserial modules as a nontrivial generalization of uniserial modules. We say that an R-module M is virtually uniserial if, for every finitely generated submodule 0≠K⊆M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne K\subseteq M$$\end{document}, K/Rad(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K/\mathrm{Rad}(K)$$\end{document} is virtually simple (an R-module M is virtually simple if, M≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ne 0$$\end{document} and M≅N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\cong N$$\end{document} for every nonzero submodule N of M). Also, an R-module M is called virtually serial if it is a direct sum of virtually uniserial modules. The above results of Warfield and Tuganbaev motivated us to study the following questions: “Which rings have the property that every projective module is virtually serial?” and “Which rings have the property that every injective module is virtually serial?”. The goal of this paper is to answer these questions.
引用
收藏
相关论文
共 50 条
  • [31] Lifting modules with indecomposable decompositions
    Er, Noyan
    Ertas, Nil Orhan
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) : 395 - 404
  • [32] On A Class of Soc-Injective Modules
    Mehdi, Akeel Ramadan
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2023, 18 (02): : 51 - 65
  • [33] Injective modules, spectral categories, and applications
    Facchini, Alberto
    NONCOMMUTATIVE RINGS, GROUP RINGS, DIAGRAM ALGEBRAS AND THEIR APPLICATIONS, 2008, 456 : 1 - 17
  • [34] On Singly Flat and Singly Injective Modules
    Yusuf Alagöz
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 1187 - 1205
  • [35] BASIC PRERADICALS AND MAIN INJECTIVE MODULES
    Raggi, Francisco
    Rios, Jose
    Rincon, Hugo
    Fernandez-Alonso, Rogelio
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2009, 8 (01) : 1 - 16
  • [36] On rings whose quasi-injective modules are injective or semisimple
    Sarac, Bulent
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (12)
  • [37] TORSION-FREE EXTENSIONS OF PROJECTIVE MODULES BY TORSION MODULES
    Fuchs, Laszlo
    JOURNAL OF COMMUTATIVE ALGEBRA, 2023, 15 (01) : 31 - 44
  • [38] The cancellation property of projective modules
    Zhang, Hongbo
    Tong, Wenting
    ALGEBRA COLLOQUIUM, 2006, 13 (04) : 617 - 622
  • [39] On supplementation and generalized projective modules
    M. A. Kamal
    A. Yousef
    Mathematical Notes, 2013, 93 : 412 - 420
  • [40] On supplementation and generalized projective modules
    Kamal, M. A.
    Yousef, A.
    MATHEMATICAL NOTES, 2013, 93 (3-4) : 412 - 420