Skew row-strict quasisymmetric Schur functions

被引:0
作者
Sarah K. Mason
Elizabeth Niese
机构
[1] Wake Forest University,Department of Mathematics
[2] Marshall University,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2015年 / 42卷
关键词
Quasisymmetric functions; Schur functions; Composition tableaux; Littlewood–Richardson rule;
D O I
暂无
中图分类号
学科分类号
摘要
Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function.
引用
收藏
页码:763 / 791
页数:28
相关论文
共 24 条
  • [1] Aguiar M(2006)Combinatorial Hopf algebras and generalized Dehn–Sommerville relations Compos. Math. 142 1-30
  • [2] Bergeron N(2011)Skew quasisymmetric Schur functions and noncommutative Schur functions Adv. Math. 226 4492-4532
  • [3] Sottile F(1996)On posets and Hopf algebras Adv. Math. 119 1-25
  • [4] Bessenrodt C(2011)A Littlewood–Richardson type rule for row-strict quasisymmetric Schur functions Disc. Math. Theor. Comput. Sci. Proc. AO 329-338
  • [5] Luoto K(1984)Multipartite p-partitions and inner products of skew Schur functions Contemp. Math 34 289-301
  • [6] van Willigenburg S(1993)Counting permutations with given cycle structure and descent set J. Comb. Theory Ser. A 64 189-215
  • [7] Ehrenborg R(2008)A combinatorial formula for non-symmetric Macdonald polynomials Amer. J. Math. 130 359-383
  • [8] Ferreira J(2011)Quasisymmetric Schur functions J. Comb. Theory Ser. A 118 463-490
  • [9] Gessel I(2000)Hecke algebras, difference operators, and quasi-symmetric functions Adv. Math. 155 181-238
  • [10] Gessel IM(1995)Duality between quasi-symmetric functions and the Solomon descent algebra J. Algebra 177 967-982