Fixed point results on a class of generalized metric spaces

被引:25
作者
Aydi H. [1 ]
Karapinar E. [2 ]
Lakzian H. [3 ]
机构
[1] Université de Sousse, Institut Supérieur d’Informatique et des Technologies de Communication de Hammam Sousse, Route GP1, H. Sousse
[2] Department of Mathematics, Atılım University, İncek, 06836, Ankara
[3] Department of Mathematics, Payame Noor University, Tehran
关键词
54H25; 47H10; Contractive type mapping; Fixed point; Generalized metric spaces;
D O I
10.1186/2251-7456-6-46
中图分类号
学科分类号
摘要
Brianciari (‘A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces,’ Publ. Math. Debrecen 57 (2000) 31-37) initiated the notion of the generalized metric space as a generalization of a metric space in such a way that the triangle inequality is replaced by the ‘quadrilateral inequality,’ d(x,y) ≤ d(x,a) + d(a,b) + d(b,y) for all pairwise distinct points x,y,a, and b of X. In this paper, we establish a fixed point result for weak contractive mappings T : X → X in complete Hausdorff generalized metric spaces. The obtained result is an extension and a generalization of many existing results in the literature. © 2012, Aydi et al; licensee Springer.
引用
收藏
相关论文
共 20 条
[1]  
Banach S., Su r les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math, 3, pp. 133-181, (1922)
[2]  
Branciari A., A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57, pp. 31-37, (2000)
[3]  
Akram M., Siddiqui A.A., A fixed-point theorem for A-contractions on a class of generalized metric spaces, Korean J. Math. Sciences, 10, 2, pp. 1-5, (2003)
[4]  
Azam A., Arshad M., Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl, 1, 1, pp. 45-48, (2008)
[5]  
Chen C.M., Chen C.H., Periodic points for the weak contraction mappings in complete generalized metric spaces, Fixed Point Theory Appl, 2012, (2012)
[6]  
Das P., A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sci, 9, pp. 29-33, (2002)
[7]  
Das P., A fixed point theorem in a generalized metric space, Soochow J. Math, 33, 1, pp. 33-39, (2007)
[8]  
Das P., Lahiri B.K., Fixed point of a Ljubomir Ćirić’s quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen, 61, pp. 589-594, (2002)
[9]  
Das P., Lahiri B.K., Fixed point of contractive mappings in generalized metric spaces, Math. Slovaca, 59, 4, pp. 499-504, (2009)
[10]  
Fora A., Bellour A., Al-Bsoul A., Some results in fixed point theory concerning generalized metric spaces, Matematicki Vesnik, 61, 3, pp. 203-208, (2009)