A note on isoperimetric inequalities of Gromov hyperbolic manifolds and graphs

被引:0
作者
Álvaro Martínez-Pérez
José M. Rodríguez
机构
[1] Universidad de Castilla-La Mancha,Departamento de Análisis Económico y Finanzas
[2] Universidad Carlos III de Madrid,Departamento de Matemáticas
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2021年 / 115卷
关键词
Cheeger isoperimetric constant; Gromov hyperbolicity; Bounded local geometry; Pole; 53C21; 53C23; 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
We study in this paper the relationship of isoperimetric inequality and hyperbolicity for graphs and Riemannian manifolds. We obtain a characterization of graphs and Riemannian manifolds (with bounded local geometry) satisfying the (Cheeger) isoperimetric inequality, in terms of their Gromov boundary, improving similar results from a previous work. In particular, we prove that having a pole is a necessary condition to have isoperimetric inequality and, therefore, it can be removed as hypothesis.
引用
收藏
相关论文
共 91 条
  • [1] Abu-Ata M(2016)Metric tree-like structures in real-life networks: an empirical study Networks 67 49-68
  • [2] Dragan FF(1999)Isoperimetric inequalities in Riemann surfaces of infinite type Rev. Mat. Iberoam. 15 353-427
  • [3] Alvarez V(2006)Gromov hyperbolicity of Denjoy domains Geom. Dedicata 121 221-245
  • [4] Pestana D(2001)Estimates for nonlinear harmonic “measures” on trees Mich. Math. J. 49 47-64
  • [5] Rodríguez JM(1987)Negatively curved manifolds, elliptic operators, and Martin boundary Ann. Math. 125 495-536
  • [6] Alvarez V(1992)-compactness for manifolds with Ricci curvature and injectivity radius bounded below J. Differ. Geom. 35 265-281
  • [7] Portilla A(2011)Computing the hyperbolicity constant Comput. Math. Appl. 62 4592-4595
  • [8] Rodríguez JM(2011)Hyperbolicity and complement of graphs Appl. Math. Lett. 24 1882-1887
  • [9] Tourís E(1997)Hausdorff dimension and Kleinian groups Acta Math. 179 1-39
  • [10] Alvarez V(2001)On the hyperbolicity of chordal graphs Ann. Comb. 5 61-69