Interpreting remanence isotherms: a Preisach-based study

被引:0
作者
R. M. Roshko
C. Viddal
机构
[1] University of Manitoba,Department of Physics and Astronomy
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2004年 / 40卷
关键词
Remanence; Free Energy Landscape; Minor Loop; Undistorted Image; Dissipation Field;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical simulations of the field dependence of the isothermal remanent moment (IRM) and the thermoremanent moment (TRM) are presented, based on a Preisach formalism which decomposes the free energy landscape into an ensemble of thermally activated, temperature dependent, double well subsystems, each characterized by a dissipation field Hd and a bias field Hs. The simulations show that the TRM approaches saturation much more rapidly than the corresponding IRM and that, as a consequence, the characteristics of the IRM are determined primarily by the distribution of dissipation fields, as defined by the mean field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_d (T)$\end{document} and the dispersion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_d (T)$\end{document}, while the characteristics of the TRM are determined primarily by a mixture of the mean dissipation field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_d (T)$\end{document} and the dispersion of bias fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_s (T)$\end{document}. The simulations also identify a regime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_d \gg\sigma_s $\end{document}, where the influence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_d (T)$\end{document} on the TRM is negligible, and hence where the TRM and the IRM provide essentially independent scans of the Preisach distribution along the two orthogonal Hs and Hd directions, respectively. The systematics established by the model simulations are exploited to analyze TRM and IRM data from a mixed ferromagnetic perovskite Ca0.4Sr0.6RuO3, and to reconstruct the distribution of characteristic fields Hd and Hs, and its variation with temperature.
引用
收藏
页码:145 / 151
页数:6
相关论文
empty
未找到相关数据