Lyapunov Spectra for All Ten Symmetry Classes of Quasi-one-dimensional Disordered Systems of Non-interacting Fermions

被引:0
作者
Andreas W. W. Ludwig
Hermann Schulz-Baldes
Michael Stolz
机构
[1] University of California,Department of Physics
[2] Universität Erlangen-Nürnberg,Department Mathematik
[3] Ruhr-Universität Bochum,Fakultät für Mathematik
来源
Journal of Statistical Physics | 2013年 / 152卷
关键词
Lyapunov spectrum; Symmetry classes; Delocalization;
D O I
暂无
中图分类号
学科分类号
摘要
A random phase property is proposed for products of random matrices drawn from any one of the classical groups associated with the ten Cartan symmetry classes of non-interacting disordered Fermion systems. It allows to calculate the Lyapunov spectrum explicitly in a perturbative regime. These results apply to quasi-one-dimensional random Dirac operators which can be constructed as representatives for each of the ten symmetry classes. For those symmetry classes that correspond to two-dimensional topological insulators or superconductors, the random Dirac operators describing the one-dimensional boundaries have vanishing Lyapunov exponents and almost surely an absolutely continuous spectrum, reflecting the gapless and conducting nature of the boundary degrees of freedom.
引用
收藏
页码:275 / 304
页数:29
相关论文
共 71 条
  • [11] Gruzberg I.A.(1999)Propagating edge states for a magnetic Hamiltonian Math. Phys. Electron. J. 5 377-10297
  • [12] Mudry C.(1982)Transmission coefficient and the localization length of an electron in JETP Lett. 36 10267-771
  • [13] Beenakker C.W.J.(2000) bound disordered chains Ann. Henri Poincaré 1 725-429
  • [14] Büttiker M.(1963)On the extended nature of edge states of Quantum Hall Hamiltonians Trans. Am. Math. Soc. 108 403-4254
  • [15] Caselle M.(2000)Noncommuting random products Phys. Rev. B 61 4245-317
  • [16] Magnea U.(2005)Paired states of fermions in two dimensions with breaking of parity ad time-reversal symmetries and the fractional quantum Hall effect Commun. Math. Phys. 257 290-253
  • [17] Collins B.(2005)Symmetry classes of disordered fermions Phys. Rev. Lett. 95 247-153
  • [18] Collins B.(1988)Z Commun. Math. Phys. 119 122-2257
  • [19] Matsumoto S.(1999) topological order and the quantum spin Hall effect Phys. Rev. B 60 2224-242
  • [20] Collins B.(1988)Stochastic Schrödinger operators and Jacobi matrices on the strip Ann. Phys. 181 209-491