Lyapunov Spectra for All Ten Symmetry Classes of Quasi-one-dimensional Disordered Systems of Non-interacting Fermions

被引:0
作者
Andreas W. W. Ludwig
Hermann Schulz-Baldes
Michael Stolz
机构
[1] University of California,Department of Physics
[2] Universität Erlangen-Nürnberg,Department Mathematik
[3] Ruhr-Universität Bochum,Fakultät für Mathematik
来源
Journal of Statistical Physics | 2013年 / 152卷
关键词
Lyapunov spectrum; Symmetry classes; Delocalization;
D O I
暂无
中图分类号
学科分类号
摘要
A random phase property is proposed for products of random matrices drawn from any one of the classical groups associated with the ten Cartan symmetry classes of non-interacting disordered Fermion systems. It allows to calculate the Lyapunov spectrum explicitly in a perturbative regime. These results apply to quasi-one-dimensional random Dirac operators which can be constructed as representatives for each of the ten symmetry classes. For those symmetry classes that correspond to two-dimensional topological insulators or superconductors, the random Dirac operators describing the one-dimensional boundaries have vanishing Lyapunov exponents and almost surely an absolutely continuous spectrum, reflecting the gapless and conducting nature of the boundary degrees of freedom.
引用
收藏
页码:275 / 304
页数:29
相关论文
共 71 条
  • [1] Abramovici G.(2012)Clifford modules and symmetries of topological insulators Int. J. Geom. Methods Mod. Phys. 09 1142-1161
  • [2] Kalugin P.(1997)Non-standard symmetry classes in mesoscopic normal-superconducting hybrid structures Phys. Rev. B 55 862-865
  • [3] Altland A.(1998)Delocalization in coupled one-dimensional chains Phys. Rev. Lett. 81 1064-1067
  • [4] Zirnbauer M.(2000)Localization and delocalization in dirty superconducting wires Phys. Rev. Lett. 85 1889-1892
  • [5] Brouwer P.W.(1992)Suppression of shot noise in metallic diffusive conductors Phys. Rev. B 46 953-982
  • [6] Mudry C.(2006)Symmetric space description of carbon nanotubes J. Stat. Mech. Theory Exp. 2006 773-795
  • [7] Simons B.D.(2003)Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability Int. Math. Res. Not. 17 876-895
  • [8] Altland A.(2009)On some properties of orthogonal Weingarten functions J. Math. Phys. 50 17-321
  • [9] Brouwer P.W.(2006)Integration with respect to the Haar measure on unitary, orthogonal and symplectic group Commun. Math. Phys. 264 318-442
  • [10] Furusaki A.(2008)Borel theorems for random matrices from the classical compact symmetric spaces Ann. Probab. 36 405-428