Existence and Nonlinear Stability of Stationary States of the Schrödinger–Poisson System

被引:0
作者
Peter A. Markowich
Gerhard Rein
Gershon Wolansky
机构
[1] Universität Wien,Institut für Mathematik
[2] Technion,undefined
来源
Journal of Statistical Physics | 2002年 / 106卷
关键词
Hartree problem; Schrödinger–Poisson system; stationary solutions; nonlinear stability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Schrödinger–Poisson system in the repulsive (plasma physics) Coulomb case. Given a stationary state from a certain class we prove its nonlinear stability, using an appropriately defined energy-Casimir functional as Lyapunov function. To obtain such states we start with a given Casimir functional and construct a new functional which is in some sense dual to the corresponding energy-Casimir functional. This dual functional has a unique maximizer which is a stationary state of the Schrödinger–Poisson system and lies in the stability class. The stationary states are parameterized by the equation of state, giving the occupation probabilities of the quantum states as a strictly decreasing function of their energy levels.
引用
收藏
页码:1221 / 1239
页数:18
相关论文
共 34 条
  • [1] Angelescu N.(1994)Derivation and classical limit of the mean-field equation for a quantum Coulomb system: Maxwell-Boltzmann statistics J. Statist. Phys. 74 147-165
  • [2] Pulvirenti M.(1965)Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid Sov. Math. Dokl. 6 773-776
  • [3] Teta A.(1969)On an a priori estimate in the theory of hydrodynamical stability Amer. Math. Soc. Transl., Series 2 79 267-269
  • [4] Arnol'd V. I.(1991)The three-dimensional Wigner-Poisson problem: Existence, uniqueness and approximation Math. Meth. Appl. Sci. 14 35-62
  • [5] Arnol'd V. I.(1931)ber die Konstruktion einer zu den irreduziblen Darstellungen halbeinfacher kontinuierlicher Gruppen gehörigen Differentialgleichung Proc. R. Soc. Amsterdam 34 844-846
  • [6] Brezzi F.(1997)-solutions to the Schrödinger-Poisson system: Existence, uniqueness, time behaviour, and smoothing effects Math. Mod. Meth. Appl. Sci. 7 1051-1083
  • [7] Markowich P. A.(1975)Global existence of solutions to the Cauchy problem for time dependent Hartree equations J. Math. Phys. 16 1122-1130
  • [8] Casimir H. G. B.(1998)Semiclassical, Math. Mod. and Num. Anal. 32 699-713
  • [9] Castella F.(1999) asymptotics and dispersive effects for the Hartree-Fock systems Arch. Rational Mech. Anal. 150 209-224
  • [10] Chadam J. M.(2000)Variational method in polytropic galaxies Contem. Math. 263 85-107