Antiferromagnetic and ferromagnetic spintronics and the role of in-chain and inter-chain interaction on spin transport in the Heisenberg ferromagnet

被引:0
作者
L. S. Lima
机构
[1] Federal Center for Technological Education of Minas Gerais,Department of Physics
来源
Scientific Reports | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Spin-transport and current-induced torques in ferromagnet heterostructures given by a ferromagnetic domain wall are investigated. Furthermore, the continuum spin conductivity is studied in a frustrated spin system given by the Heisenberg model with ferromagnetic in-chain interaction J1<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1<0$$\end{document} between nearest neighbors and antiferromagnetic next-nearest-neighbor in-chain interaction J2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2>0$$\end{document} with aim to investigate the effect of the phase diagram of the critical ion single anisotropy Dc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_c$$\end{document} as a function of J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} on conductivity. We consider the model with the moderate strength of the frustrating parameter such that in-chain spin-spin correlations that are predominantly ferromagnetic. In addition, we consider two inter-chain couplings J⊥,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\perp ,y}$$\end{document} and J⊥,z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\perp ,z}$$\end{document}, corresponding to the two axes perpendicular to chain where ferromagnetic as well as antiferromagnetic interactions are taken into account.
引用
收藏
相关论文
共 289 条
[21]  
Abraham DW(2014)Density functional approach for the magnetism of J. Phys. Soc. Jpn. 83 103702-undefined
[22]  
Nowak JJ(2014)Evidence for Phys. Rev. B 90 134401-undefined
[23]  
Trouilloud PL(2015) and Phys. Rev. B 91 174410-undefined
[24]  
Lu Y(2016) as model Phys. Rev. Lett. 116 047202-undefined
[25]  
Brown SL(2016) zigzag chain materials Phys. Rev. B 94 064403-undefined
[26]  
Worledge DC(2016)NaCuMoO Phys. Rev. B 93 022301-undefined
[27]  
Gallagher WJ(1999)(OH) as a candidate frustrated J. Phys. Soc. Jpn. 68 269-undefined
[28]  
Ilgaz D(1999) chain quantum magnet Phys. Rev. B 59 6873-undefined
[29]  
Nievendick J(2006)Search for a spin-nematic phase in the quasi-one-dimensional frustrated magnet Europhys. Lett. 73 83-undefined
[30]  
Heyne L(2012)Magnetic field driven 2D–3D crossover in the Phys. Rev. Lett. 109 117207-undefined