Non-uniform spacings processes

被引:0
|
作者
Deheuvels P. [1 ]
机构
[1] L.S.T.A., U.P.M.C., Université Pierre et Marie Curie (Paris VI), 92340 Bourg-la-Reine
关键词
Brownian bridge; Empirical process; Gaussian process; Invariance principles; Order statistics; Quantile process; Spacings;
D O I
10.1007/s11203-011-9054-2
中图分类号
学科分类号
摘要
We provide a joint strong approximation of the uniform spacings empirical process and of the uniform quantile process by sequences of independent Gaussian processes. This allows us to obtain an explicit description of the limiting Gaussian process generated by the sample spacings from a non-uniform distribution. It is of the form B(t) + (1-σF) {(1-t)log(1-1)} ∫01, for 0 ≤ t ≤ 1, where {B(t):0 ≤ t ≤ 1} denotes a Brownian bridge, and where σF2=Var(log f(X)) is a factor depending upon the underlying distribution function F(·)=P(X ≤ x) through its density f (x)= d/dx F(x). We provide a strong approximation of the non-uniform spacings processes by replicæ of this Gaussian process, with limiting sup-norm rate OP(n-1/8(log n)1/2). The limiting process reduces to a Brownian bridge if and only if σ2F, which is the case when the sample observations are exponential. For uniform spacings, we get σ2F=0, which is in agreement with the results of Beirlant (In: Limit theorems in probability and statistics, Proc Coll Math Soc J Bolyai, vol 36, Akadémiai Kiadó, Budapest, pp 77-80, 1984), and Aly et al. (Z Wahrsch Verw Gebiete 66:461-484, 1984). © 2011 Springer Science+Business Media B.V.
引用
收藏
页码:141 / 175
页数:34
相关论文
共 50 条
  • [1] Uniform and non-uniform quantization of Gaussian processes
    Seleznjev, Oleg
    Shykula, Mykola
    MATHEMATICAL COMMUNICATIONS, 2012, 17 (02) : 447 - 460
  • [2] Uniformity of Offsprings from Uniform and Non-Uniform Parents
    Gomes, M. Ivette
    Pestana, Dinis
    Sequeira, Fernando
    Mendonca, Sandra
    Velosa, Silvio
    PROCEEDINGS OF THE ITI 2009 31ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2009, : 243 - +
  • [3] Limit results for ordered uniform spacings
    Bairamov, Ismihan
    Berred, Alexandre
    Stepanov, Alexei
    STATISTICAL PAPERS, 2010, 51 (01) : 227 - 240
  • [4] Limit results for ordered uniform spacings
    Ismihan Bairamov
    Alexandre Berred
    Alexei Stepanov
    Statistical Papers, 2010, 51 : 227 - 240
  • [5] SPACINGS-RATIO EMPIRICAL PROCESSES
    Deheuvels, Paul
    Derzko, Gerard
    PERIODICA MATHEMATICA HUNGARICA, 2010, 61 (1-2) : 121 - 164
  • [6] Spacings-ratio empirical processes
    Paul Deheuvels
    Gérard Derzko
    Periodica Mathematica Hungarica, 2010, 61 : 121 - 164
  • [7] Uniform spacings - a Bird's-Eye View
    Das, Sthitadhi
    Maiti, Saran Ishika
    STATISTICS AND APPLICATIONS, 2021, 19 (02): : 217 - 230
  • [8] Invariance principles for non-uniform random mappings and trees
    Aldous, D
    Pitman, J
    ASYMPTOTIC COMBINATORICS WITH APPLICATIONS TO MATHEMATICAL PHYSICS, 2002, 77 : 113 - 147
  • [9] ON NON-UNIFORM BERRY-ESSEEN BOUNDS FOR TIME SERIES
    Jirak, Moritz
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2015, 35 (01): : 1 - 14
  • [10] Randomization with non-uniform allocations: fulfillment time distributions and bias properties
    Rukhin, Andrew L.
    STATISTICS, 2007, 41 (01) : 11 - 29