Non-uniform spacings processes

被引:0
|
作者
Deheuvels P. [1 ]
机构
[1] L.S.T.A., U.P.M.C., Université Pierre et Marie Curie (Paris VI), 92340 Bourg-la-Reine
关键词
Brownian bridge; Empirical process; Gaussian process; Invariance principles; Order statistics; Quantile process; Spacings;
D O I
10.1007/s11203-011-9054-2
中图分类号
学科分类号
摘要
We provide a joint strong approximation of the uniform spacings empirical process and of the uniform quantile process by sequences of independent Gaussian processes. This allows us to obtain an explicit description of the limiting Gaussian process generated by the sample spacings from a non-uniform distribution. It is of the form B(t) + (1-σF) {(1-t)log(1-1)} ∫01, for 0 ≤ t ≤ 1, where {B(t):0 ≤ t ≤ 1} denotes a Brownian bridge, and where σF2=Var(log f(X)) is a factor depending upon the underlying distribution function F(·)=P(X ≤ x) through its density f (x)= d/dx F(x). We provide a strong approximation of the non-uniform spacings processes by replicæ of this Gaussian process, with limiting sup-norm rate OP(n-1/8(log n)1/2). The limiting process reduces to a Brownian bridge if and only if σ2F, which is the case when the sample observations are exponential. For uniform spacings, we get σ2F=0, which is in agreement with the results of Beirlant (In: Limit theorems in probability and statistics, Proc Coll Math Soc J Bolyai, vol 36, Akadémiai Kiadó, Budapest, pp 77-80, 1984), and Aly et al. (Z Wahrsch Verw Gebiete 66:461-484, 1984). © 2011 Springer Science+Business Media B.V.
引用
收藏
页码:141 / 175
页数:34
相关论文
共 50 条
  • [1] MAXIMAL, NON-UNIFORM SPACINGS AND THE COVERAGE PROBLEM
    HUSLER, J
    JOURNAL OF APPLIED PROBABILITY, 1988, 25 (03) : 519 - 528
  • [2] Uniform and non-uniform quantization of Gaussian processes
    Seleznjev, Oleg
    Shykula, Mykola
    MATHEMATICAL COMMUNICATIONS, 2012, 17 (02) : 447 - 460
  • [3] ON IRREVERSIBLE PROCESSES IN NON-UNIFORM SYSTEMS
    PRIGOGINE, I
    PHILIPPOT, J
    PHYSICA, 1957, 23 (06): : 569 - 584
  • [4] A geometric model for non-uniform processes of morphogenesis
    Jimenez, Victor Manuel
    de Leon, Manuel
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186
  • [5] NON-UNIFORM HYPERBOLICITY AND NON-UNIFORM SPECIFICATION
    Oliveira, Krerley
    Tian, Xueting
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (08) : 4371 - 4392
  • [6] JUMP PROCESSES ON SPACES WITH NON-UNIFORM VOLUME GROWTH
    Hinz, Michael
    KYUSHU JOURNAL OF MATHEMATICS, 2011, 65 (02) : 395 - 415
  • [7] NON-OVERLAPPING UNIFORM m-SPACINGS-RATIO EMPIRICAL PROCESSES
    Jeremie, Moise
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 59 (03): : 308 - 330
  • [8] Detecting non-uniform period spacings in the Kepler photometry of γ Doradus stars: methodology and case studies
    Van Reeth, T.
    Tkachenko, A.
    Aerts, C.
    Papics, P. I.
    Degroote, P.
    Debosscher, J.
    Zwintz, K.
    Bloemen, S.
    De Smedt, K.
    Hrudkova, M.
    Raskin, G.
    Van Winckel, H.
    ASTRONOMY & ASTROPHYSICS, 2015, 574
  • [9] NON-UNIFORM RATES OF CONVERGENCE TO NORMALITY FOR STRONG MIXING PROCESSES
    DASGUPTA, R
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1988, 50 : 436 - 451
  • [10] Non-uniform temporal scaling of developmental processes in the mammalian cortex
    Paolino, Annalisa
    Haines, Elizabeth H.
    Bailey, Evan J.
    Black, Dylan A.
    Moey, Ching
    Garcia-Moreno, Fernando
    Richards, Linda J.
    Suarez, Rodrigo
    Fenlon, Laura R.
    NATURE COMMUNICATIONS, 2023, 14 (01)