Huygens Principle for Singular Hyperbolic Equations

被引:0
作者
L. N. Lyakhov
K. S. Yeletskikh
S. A. Roshchupkin
机构
[1] Voronezh State University,
[2] Bunin Yelets State University,undefined
来源
Lobachevskii Journal of Mathematics | 2020年 / 41卷
关键词
Huygens principle; Cauchy problem; B-hyperbolic equation; singular analogue of the Ibragimov–Mamontov equation; F_B-transform; F_B-transform; Bessel j-function; Bessel operator;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:810 / 817
页数:7
相关论文
共 20 条
[1]  
Stellmacher K. L.(1955)Eine Klasse Huygensscher Differentialgleichungen und ihre Integration Math. Ann. 130 219-233
[2]  
Fox D. W.(1959)The solution and Huygens principle for a singular Cauchy problem J. Math. Mech. 8 197-219
[3]  
Lyakhov L. N.(2017)The mixed Fourier–Bessel transform of a radial Bessel J. Math. Sci. 226 388-401
[4]  
Yeletskikh K. S.(2018)Singular Ibragimov–Mamontov type equations J. Math. Sci. 232 437-446
[5]  
Lyakhov L. N.(1977)On the Cauchy problem for the equation Math. USSR Sb. 31 347-363
[6]  
Yeletskikh K. S.(1981)On a class of singular problems satisfying Huygens principle Dokl. Akad. Nauk SSSR 256 1307-1311
[7]  
Roshchupkin S. A.(1980)Hadamard’s method for some classes of hyperbolic equations Dokl. Akad. Nauk SSSR 252 1045-1048
[8]  
Ibragimov N. Kh.(1982)Hadamard’s method for some classes of hyperbolic equations with variable coefficients Sib. Math. J. 23 91-100
[9]  
Mamontov E. V.(1992)Fundamental solution of the wave equation with several singularities and the Huygens principle Differ. Equat. 28 383-393
[10]  
Kagan G. M.(1951)Expansion in Fourier series and integrals with Bessel functions Usp. Mat. Nauk 6 102-143