On marginal deformations and non-integrability

被引:0
作者
Dimitrios Giataganas
Leopoldo A. Pando Zayas
Konstantinos Zoubos
机构
[1] National Technical University of Athens,Physics Division
[2] University of Athens,Department of Physics
[3] University of Michigan,Michigan Center for Theoretical Physics
[4] University of Pretoria,Department of Physics
[5] ,undefined
来源
Journal of High Energy Physics | / 2014卷
关键词
AdS-CFT Correspondence; Conformal Field Models in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We study the interplay between a particular marginal deformation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 super Yang-Mills theory, the β deformation, and integrability in the holographic setting. Using modern methods of analytic non-integrability of Hamiltonian systems, we find that, when the β parameter takes imaginary values, classical string trajectories on the dual background become non-integrable. We expect the same to be true for generic complex β parameter. By exhibiting the Poincaré sections and phase space trajectories for the generic complex β case, we provide numerical evidence of strong sensitivity to initial conditions. Our findings agree with expectations from weak coupling that the complex β deformation is non-integrable and provide a rigorous argument beyond the trial and error approach to non-integrability.
引用
收藏
相关论文
共 93 条
  • [1] Maldacena JM(1998)The large-N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231-undefined
  • [2] Witten E(1998)Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253-undefined
  • [3] Gubser S(1998)Gauge theory correlators from noncritical string theory Phys. Lett. B 428 105-undefined
  • [4] Klebanov IR(2012)Review of AdS/CFT integrability: an overview Lett. Math. Phys. 99 3-undefined
  • [5] Polyakov AM(2002)Strings in flat space and pp waves from N =4 super Yang-Mills JHEP 04 013-undefined
  • [6] Beisert N(2002)A semiclassical limit of the gauge/string correspondence Nucl. Phys. B 636 99-undefined
  • [7] Berenstein DE(2002)Semiclassical quantization of rotating superstring in AdS JHEP 06 007-undefined
  • [8] Maldacena JM(2010) × S JHEP 09 094-undefined
  • [9] Nastase HS(2011)Chaos in the gauge/gravity correspondence Phys. Lett. B 699 388-undefined
  • [10] Gubser S(2012)Integrability lost JHEP 05 077-undefined