An Efficient Hardware Implementation of Feed-Forward Neural Networks

被引:0
|
作者
Tamás Szab#x00F3;
Gábor Horv#x00E1;th
机构
来源
Applied Intelligence | 2004年 / 21卷
关键词
feed-forward neural networks; B-spline approximation; activation function; hardware implementation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a new way of digital hardware implementation of nonlinear activation functions in feed-forward neural networks. The basic idea of this new realization is that the nonlinear functions can be implemented using a matrix-vector multiplication. Recently a new approach was proposed for the efficient realization of matrix-vector multipliers, and this approach can be applied for implementing nonlinear functions if these functions are approximated by simple basis functions. The paper proposes to use B-spline basis functions to approximate nonlinear sigmoidal functions, it shows that this approximation fulfils the general requirements on the activation functions, presents the details of the proposed hardware implementation, and gives a summary of an extensive study about the effects of B-spline nonlinear function realization on the size and the trainability of feed-forward neural networks.
引用
收藏
页码:143 / 158
页数:15
相关论文
共 50 条
  • [1] An efficient hardware implementation of feed-forward neural networks
    Szabó, T
    Horváth, G
    APPLIED INTELLIGENCE, 2004, 21 (02) : 143 - 158
  • [2] Optimizing FPGA implementation of Feed-Forward Neural Networks
    Oniga, S.
    Tisan, A.
    Mic, D.
    Buchman, A.
    Vida-Ratiu, A.
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL IV, 2008, : 31 - 36
  • [3] Feed-forward neural networks
    Bebis, George
    Georgiopoulos, Michael
    IEEE Potentials, 1994, 13 (04): : 27 - 31
  • [4] FPGA Implementation of Feed-Forward Neural Networks for Smart Devices Development
    Oniga, Stefan
    Tisan, Alin
    Mic, Daniel
    Lung, Claudiu
    Orha, Ioan
    Buchman, Attila
    Vida-Ratiu, Andrei
    ISSCS 2009: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS,, 2009, : 401 - 404
  • [5] Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks
    Aguiar, Manuela A. D.
    Dias, Ana Paula S.
    Ferreira, Flora
    CHAOS, 2017, 27 (01)
  • [6] Feed-forward Neural Networks with Trainable Delay
    Ji, Xunbi A.
    Molnar, Tamas G.
    Avedisov, Sergei S.
    Orosz, Gabor
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 127 - 136
  • [7] On lateral connections in feed-forward neural networks
    Kothari, R
    Agyepong, K
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 13 - 18
  • [8] Optimizing dense feed-forward neural networks
    Balderas, Luis
    Lastra, Miguel
    Benitez, Jose M.
    NEURAL NETWORKS, 2024, 171 : 229 - 241
  • [9] Maximizing the margin with Feed-Forward Neural Networks
    Romero, E
    Alquézar, R
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 743 - 748
  • [10] Internal workings of feed-forward neural networks
    Zhang, QJ
    Stanley, SJ
    Smith, DW
    JOURNAL OF ENVIRONMENTAL ENGINEERING AND SCIENCE, 2004, 3 : S1 - S12