Li1+xTa1-xTixO3x=0.08,0.11,0.14,0.17\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L{i_{1 + x}}T{a_{1 - x}}T{i_x}{O_3}\left ( {x = 0.08, 0.11, 0.14, 0.17} \right)$$\end{document} solid solutions were prepared by conventional solid state route by calcining at 1100 °C and sintering at 1150 °C. These were then characterized for structural, dielectric and luminescence properties at room temperature. X-ray diffraction (XRD) patterns indicated formation of M-phase solid solutions with hexagonal symmetry. Transmission electron microscope (TEM) images showed the particle clusters with average particle size in the range 0.107 μm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu m$$\end{document} to 0.229 μm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu m$$\end{document}. Fourier Transform-Infra Red (FT-IR) spectra confirmed the presence of metal oxygen bonds of Li-O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Li - O$$\end{document} and overlapped Ta-O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Ta - O$$\end{document} and Ti-O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Ti - O$$\end{document} bonds. Dielectric properties were measured in the frequency range from 10 kHz to 1 MHz at room temperature using impedance analyzer. The dielectric permittivity was observed in the range 38–45 and loss tangent in the range 0.02–0.11 at 1 MHz as x\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x$$\end{document} varied from 0.08 to 0.17. The highest photoluminescence intensity was obtained for composition x\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x$$\end{document} = 0.11 (TiO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Ti{O_2}$$\end{document} 11 mol%). These materials have reasonably good dielectric properties and photoluminescence and hence suitable for microelectronic and light emitting devices.