A remark on trigonometric sums

被引:0
作者
Imre Kátai
机构
[1] Department of Computer Algebra,Computer Algebra Tanszék
[2] Eötvös Loránd University,undefined
来源
Acta Mathematica Hungarica | 2006年 / 112卷
关键词
exponential sums;
D O I
暂无
中图分类号
学科分类号
摘要
Let <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> S(x,\alpha\mid X_p):=\sum_{\substack{p_1p_2<x\\ p_1<p_2}} X_{p_1}X_{p_2}e^{2\pi i\alpha p_1p_2},\qquad \pi_2(x)=\sum_{\substack{p_1p_2<x\\ p_1<p_2}} 1, $$ where $p$, $p_1$, $p_2$ run over the prime numbers. It is proved that $$ \max_{\substack{|X_p|\le 1\\ p}} \frac{{S(x,\alpha,X_p)}}{{\pi_2(x)}} =\Delta(x,\alpha)\to 0\qquad(x\to\infty) $$ for almost all irrational $\alpha$.
引用
收藏
页码:221 / 225
页数:4
相关论文
empty
未找到相关数据