Effects of dietary protein intake on the oxidation of glutamate, glutamine, glucose and palmitate in tissues of largemouth bass (Micropterus salmoides)

被引:0
|
作者
Xinyu Li
Shixuan Zheng
Tao Han
Fei Song
Guoyao Wu
机构
[1] Texas A&M University,Department of Animal Science
[2] Guangdong Yuehai Feeds Group Co.,undefined
[3] Ltd.,undefined
来源
Amino Acids | 2020年 / 52卷
关键词
Amino acids; Oxidation; Substrates; Fish;
D O I
暂无
中图分类号
学科分类号
摘要
Largemouth bass (Micropterus salmoides, a carnivorous fish native to North America) prefers to utilize amino acids as energy sources rather than glucose and fatty acids. However, little is known about the nutritional regulation of substrate oxidation in the fish. Therefore, this study was conducted to determine whether the oxidation of glutamate, glutamine, glucose and palmitate in its tissues might be influenced by dietary protein intake. Juvenile largemouth bass (initial weight 18.3 ± 0.1 g) were fed three isocaloric diets containing 40%, 45% and 50% protein for 8 weeks. The growth performance, energy retention, and lipid retention of juvenile fish increased with increasing dietary protein levels. The rate of oxidation of glutamate by the intestine was much greater than that of glutamine, explaining why increasing the dietary protein content from 40% to 50% had no effect on the serum concentration of glutamate but increased that of glutamine in the fish. The liver of fish fed the 50% protein diet had a higher (P < 0.05) rate of glutamine oxidation than that in the 40% and 45% protein groups. In contrast, augmenting dietary protein content from 40% to 45% increased (P < 0.05) both glutamine and glutamate oxidation in the proximal intestine of the fish and renal glutamine oxidation, without changes in intestinal or renal AA oxidation between the 45% and 50% protein groups. Furthermore, the rates of glucose oxidation in the liver, kidney, and intestine of largemouth bass were decreased in response to an  increase in dietary  protein content   from 40% to 45% and a concomitant decrease in dietary starch content from 22.3% to 15.78%, but did not differ between the 45% and 50% protein groups.   The rates of oxidation of glucose in skeletal muscle and those of palmitate in all tissues (except for the  kidney) were not affected by the diets. Collectively, these results indicate that the largemouth bass can regulate substrate metabolism in a  tissue-specific manner to favor protein and lipid gains as dietary protein content increases from 40% to 50% and have a lower ability to oxidize fatty acids and glucose than amino acids regardless of the dietary protein intake. 
引用
收藏
页码:1491 / 1503
页数:12
相关论文
共 50 条
  • [11] Effects of Virgin Microplastics on Growth, Intestinal Morphology and Microbiota on Largemouth Bass (Micropterus salmoides)
    Zhang, Chaonan
    Wang, Qiujie
    Wang, Shaodan
    Pan, Zhengkun
    Sun, Di
    Cheng, Yanbo
    Zou, Jixing
    Xu, Guohuan
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [12] Dietary creatine promotes creatine reserves, protein deposition, and myofiber hyperplasia in muscle of juvenile largemouth bass (Micropterus salmoides)
    Yu, Haodong
    He, Ya
    Qin, Mu
    Wang, Li
    Rong, Keming
    Zhang, Xuezhen
    AQUACULTURE, 2024, 583
  • [13] Effects of different thawing methods on physicochemical properties and structure of largemouth bass (Micropterus salmoides)
    Cai, Luyun
    Wan, Jiangli
    Li, Xiuxia
    Li, Jianrong
    JOURNAL OF FOOD SCIENCE, 2020, 85 (03) : 582 - 591
  • [14] High dietary starch impaired growth performance, liver histology and hepatic glucose metabolism of juvenile largemouth bass,Micropterus salmoides
    Zhang, Yanmei
    Xie, Shiwei
    Wei, Hanlin
    Zheng, Lu
    Liu, Zhenlu
    Fang, Haohang
    Xie, Jiajun
    Liao, Shiyu
    Tian, Lixia
    Liu, Yongjian
    Niu, Jin
    AQUACULTURE NUTRITION, 2020, 26 (04) : 1083 - 1095
  • [15] Dietary intakes of protein and starch affect the oxidation of nutrients in tissues of Largemouth bass
    Li, Xinyu
    Wu, Guoyao
    JOURNAL OF ANIMAL SCIENCE, 2019, 97 : 275 - 275
  • [16] Effects of mannan oligosaccharides (MOS) on glucose and lipid metabolism of largemouth bass (Micropterus salmoides) fed with high carbohydrate diet
    Wang, Tong
    Xu, Rong
    Qiao, Fang
    Du, Zhen-Yu
    Zhang, Mei-Ling
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2022, 292
  • [17] Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides)
    Huang, Dongyu
    Jahazi, Joshua Daniel
    Ren, Mingchun
    Zhang, Lu
    Liang, Hualiang
    VETERINARY SCIENCES, 2024, 11 (11)
  • [18] The beneficial effects of metformin inclusion on growth performance, glucose utilization, antioxidant capacity and apoptosis of largemouth bass ( Micropterus salmoides) ) fed with high dietary carbohydrates
    Wang, Xiaoyuan
    Gong, Ye
    Li, Wenfei
    Liu, Ning
    Fang, Zishuo
    Zhang, Nihe
    Chen, Naisong
    Li, Songlin
    AQUACULTURE, 2024, 588
  • [19] Effect of Dietary Copper on Growth Performance, Antioxidant Capacity, and Immunity in Juvenile Largemouth Bass (Micropterus salmoides)
    Kayiira, John Cosmas
    Mi, Haifeng
    Liang, Hualiang
    Ren, Mingchun
    Huang, Dongyu
    Zhang, Lu
    Teng, Tao
    FISHES, 2024, 9 (09)
  • [20] Dietary L-Carnitine Alleviates the Adverse Effects Caused by Reducing Protein and Increasing Fat Contents in Diet Juvenile Largemouth Bass (Micropterus salmoides)
    Liu, Yi-Chan
    Limbu, Samwel M.
    Wang, Jin-Gang
    Ren, Jiong
    Qiao, Fang
    Zhang, Mei-Ling
    Du, Zhen-Yu
    AQUACULTURE NUTRITION, 2022, 2022