Abstract Coherent State Transforms Over Homogeneous Spaces of Compact Groups

被引:0
作者
Arash Ghaani Farashahi
机构
[1] Johns Hopkins University,Laboratory for Computational Sensing and Robotics (LCSR), Whiting School of Engineering
来源
Complex Analysis and Operator Theory | 2018年 / 12卷
关键词
Homogeneous space; -invariant measure; Compact group; Unitary representation; Irreducible representation; Coherent state/voice transform; Inversion formula; Resolution of the identity; Reproducing kernel Hilbert spaces; Primary 43A85; 47A67;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents theoretical aspects of a unified generalization for the abstract theory of coherent state/voice transforms over homogeneous spaces of compact groups using operator theory. Let G be a compact group and H be a closed subgroup of G. Let G/H be the left coset space of H in G and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} be the normalized G-invariant measure on G/H associated to the Weil’s formula with respect to the probability measures of G, H. Let (π,Hπ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi ,\mathcal {H}_\pi )$$\end{document} be a continuous unitary representation of G with non-zero mean over H. In this article, we introduce the generalized notion of coherent state/voice transform associated to π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} on the Hilbert function L2(G/H,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(G/H,\mu )$$\end{document}. We then study basic analytic properties of these transforms.
引用
收藏
页码:1537 / 1548
页数:11
相关论文
共 29 条
[1]  
Ali ST(1991)Square integrability of group representations on homogeneous spaces. II. Coherent and quasi-coherent state. The case of the Poincar group Ann. Henri Poincaré. 55 857-890
[2]  
Antoine JP(1991)Square integrability of group representations on homogeneous spaces. I. Reproducing triples and frames Ann. Henri Poincaré. 55 829-855
[3]  
Gazeau JP(2013)Signal processing by alternate dual Gabor frames Appl. Comput. Harmon. Anal. 35 535-540
[4]  
Ali ST(2009)On the square integrability of quasi regular representation on semidirect product groups J. Geom. Anal. 19 541-552
[5]  
Antoine JP(2008)Generalized coorbit theory, Banach frames, and the relation to Proc. Lond. Math. Soc. 96 464-506
[6]  
Gazeau JP(1989)-modulation spaces J. Funct. Anal. 86 307-340
[7]  
Arefijamaal A(1989)Banach spaces related to integrable group representations and their atomic decompositions. I Monatsh. Math. 108 129-148
[8]  
Zekaee E(2017)Banach spaces related to integrable group representations and their atomic decompositions. II Banach J. Math. Anal. 11 50-71
[9]  
Arefijamaal A(2016)Abstract harmonic analysis of wave packet transforms over locally compact abelian groups Canadian Mathematical Bulletin 60 111-121
[10]  
Kamyabi-Gol RA(2016)Abstract Plancherel (Trace) Formulas over Homogeneous Spaces of Compact Groups Journal of the Australian Mathematical Society 101 171-187