DsJ(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{sJ}(2860)$$\end{document} from the semileptonic decays of Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s$$\end{document} mesons

被引:0
作者
Long-Fei Gan
Jian-Rong Zhang
Ming-Qiu Huang
Hong-Bin Zhuo
Yan-Yun Ma
Qing-Jun Zhu
Jian-Xun Liu
Guo-Bo Zhang
机构
[1] National University of Defense Technology,College of Science
来源
The European Physical Journal C | 2015年 / 75卷 / 5期
关键词
Heavy Quark; Subtraction Term; LHCb Collaboration; Semileptonic Decay; Hadronic Matrix Element;
D O I
10.1140/epjc/s10052-015-3449-y
中图分类号
学科分类号
摘要
In the framework of heavy quark effective theory, the leading-order Isgur–Wise form factors relevant to semileptonic decays of the ground state b¯s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{b}s$$\end{document} meson Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{s}$$\end{document} into orbitally excited D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}-wave c¯s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{c}s$$\end{document} mesons, including the newly observed narrow Ds1∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{*}_{s1}(2860)$$\end{document} and Ds3∗(2860)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{*}_{s3}(2860)$$\end{document} states by the LHCb Collaboration, are calculated with the QCD sum rule method. With these universal form factors, the decay rates and branching ratios are estimated. We find that the decay widths are Γ(Bs→Ds1∗ℓν¯)=1.25-0.60+0.80×10-19GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (B_s\rightarrow D^{*}_{s1}\ell \overline{\nu }) =1.25^{+0.80}_{-0.60}\times 10^{-19}\,\text{ GeV }$$\end{document}, Γ(Bs→Ds2′ℓν¯)=1.49-0.73+0.97×10-19GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (B_s\rightarrow D^{'}_{s2}\ell \overline{\nu }) =1.49^{+0.97}_{-0.73}\times 10^{-19}\,\text{ GeV }$$\end{document}, Γ(Bs→Ds2ℓν¯)=4.48-0.94+1.05×10-17GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (B_s\rightarrow D_{s2}\ell \overline{\nu }) =4.48^{+1.05}_{-0.94}\times 10^{-17}\,\text{ GeV }$$\end{document}, and Γ(Bs→Ds3∗ℓν¯)=1.52-0.31+0.35×10-16GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (B_s\rightarrow D^{*}_{s3}\ell \overline{\nu }) = 1.52^{+0.35}_{-0.31}\times 10^{-16}\,\text{ GeV }$$\end{document}. The corresponding branching ratios are B(Bs→Ds1∗ℓν¯)=2.85-1.36+1.82×10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(B_s\rightarrow D^{*}_{s1}\ell \overline{\nu }) =2.85^{+1.82}_{-1.36}\times 10^{-7}$$\end{document}, B(Bs→Ds2′ℓν¯)=3.40-1.66+2.21×10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(B_s\rightarrow D^{'}_{s2}\ell \overline{\nu }) =3.40^{+2.21}_{-1.66}\times 10^{-7}$$\end{document}, B(Bs→Ds2ℓν¯)=1.02-0.21+0.24×10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(B_{s}\rightarrow D_{s2}\ell \overline{\nu }) =1.02^{+0.24}_{-0.21}\times 10^{-4}$$\end{document}, and B(Bs→Ds3∗ℓν¯)=3.46-0.70+0.80×10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(B_s\rightarrow D^{*}_{s3}\ell \overline{\nu }) = 3.46^{+0.80}_{-0.70}\times 10^{-4}$$\end{document}. The decay widths and branching ratios of corresponding Bs∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{*}_{s}$$\end{document} semileptonic processes are also predicted.
引用
收藏
相关论文
共 92 条
  • [1] Zhou D(2014)undefined Phys. Rev. D 90 114035-undefined
  • [2] Cui EL(2014)undefined Phys. Rev. D 90 117501-undefined
  • [3] Chen HX(1992)undefined Phys. Rev. D 45 2451-undefined
  • [4] Geng LS(1992)undefined Phys. Rev. D 46 3914-undefined
  • [5] Liu X(1997)undefined Phys. Rev. Lett. 78 3995-undefined
  • [6] Zhu SL(1998)undefined Phys. Rev. D 57 308-undefined
  • [7] Godfrey S(1998)undefined Phys. Rev. D 58 034004-undefined
  • [8] Moats K(1997)undefined Phys. Rev. D 56 5668-undefined
  • [9] Neubert M(1999)undefined Phys. Rev. D 61 014016-undefined
  • [10] Neubert M(2007)undefined Phys. Rev. D 75 074008-undefined