On a functional equation characterizing two-sided centralizers in prime rings

被引:0
作者
Maja Fošner
Benjamin Marcen
Joso Vukman
机构
[1] University of Maribor,Faculty of Logistics
[2] University of Maribor,Department of Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics
来源
Periodica Mathematica Hungarica | 2023年 / 86卷
关键词
Ring; Prime ring; Semiprime ring; Derivation; Jordan derivation; Jordan triple derivation; Left (right) centralizer; Left (right) Jordan centralizer; Two-sided centralizer; Functional equation; Functional identity; 16R60; 16W25; 39B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the following result: Let R be a prime ring with char(R)≠2,3,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {char}}(R)\ne 2,3,5$$\end{document} and let T:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T :R \rightarrow R$$\end{document} be an additive mapping satisfying the relation 3T(x4)=T(x)x3+xT(x2)x+x3T(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 3T(x^{4})=T(x)x^{3}+xT(x^2)x+x^{3}T(x)$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document}. In this case T is of the form T(x)=λx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(x)=\lambda x$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document} and some fixed element λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in C$$\end{document}, where C is the extended centroid of R.
引用
收藏
页码:538 / 551
页数:13
相关论文
共 59 条
  • [11] Benkovič D(1991)Jordan Glasnik Mat. 16 13-17
  • [12] Eremita D(2007) -derivations Taiwan. J. Math. 11 1397-1406
  • [13] Benkovič D(1975)Generalized Jordan triple Proc. Am. Math. Soc. 53 321-324
  • [14] Eremita D(2016)-derivations on semiprime rings Mediterr. J. Math. 13 537-556
  • [15] Vukman J(2018)Jordan derivations on rings Glasnik Mat. 53 73-95
  • [16] Brešar M(2018)On certain identity related to Herstein theorem on Jordan derivations Math. Notes 103 821-831
  • [17] Brešar M(2016)A result in the spirit of Herstein theorem Bull. Malays. Math. Soc. 39 885-899
  • [18] Brešar M(2009)On a functional equation related to Jordan triple derivation in prime rings Houst. J. Math. 35 353-361
  • [19] Brešar M(1957)A result related to Herstein theorem Proc. Am. Math. Soc. 8 1104-1110
  • [20] Vukman J(1995)An equation related to two-sided centralizers in primer rings Publ. Math. Debrecen 46 89-95