On a functional equation characterizing two-sided centralizers in prime rings

被引:0
作者
Maja Fošner
Benjamin Marcen
Joso Vukman
机构
[1] University of Maribor,Faculty of Logistics
[2] University of Maribor,Department of Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics
来源
Periodica Mathematica Hungarica | 2023年 / 86卷
关键词
Ring; Prime ring; Semiprime ring; Derivation; Jordan derivation; Jordan triple derivation; Left (right) centralizer; Left (right) Jordan centralizer; Two-sided centralizer; Functional equation; Functional identity; 16R60; 16W25; 39B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the following result: Let R be a prime ring with char(R)≠2,3,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {char}}(R)\ne 2,3,5$$\end{document} and let T:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T :R \rightarrow R$$\end{document} be an additive mapping satisfying the relation 3T(x4)=T(x)x3+xT(x2)x+x3T(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 3T(x^{4})=T(x)x^{3}+xT(x^2)x+x^{3}T(x)$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document}. In this case T is of the form T(x)=λx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(x)=\lambda x$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document} and some fixed element λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in C$$\end{document}, where C is the extended centroid of R.
引用
收藏
页码:538 / 551
页数:13
相关论文
共 59 条
  • [1] Beidar KI(2002)Functional identities revised: the functional and the strong degree Commun. Algebra 30 935-969
  • [2] Brešar M(2000)On functional identities and d-free subsets of rings I Commun. Algebra 28 3927-3952
  • [3] Chebotar MA(1999)On additive isomorphisms of prime rings preserving polynomials J. Algebra 217 650-667
  • [4] Beidar KI(2004)Functional identities in rings and their applications Rus. Math. Surv. 59 403-428
  • [5] Chebotar MA(2004)Characterizing left centralizers by their action on a polynomials Publ. Math. 64 343-351
  • [6] Beidar KI(2008)A characterization of the centroid of a prime ring Studia Sci. Math. Hungar. 45 379-394
  • [7] Fong Y(1989)Jordan mappings of semiprime rings J. Algebra 127 218-228
  • [8] Beidar KI(2000)Functional identities: a survey Contemp. Math. 259 93-109
  • [9] Mikhalev AV(1988)Jordan derivations on semiprime rings Proc. Am. Math. Soc. 104 1003-1006
  • [10] Chebotar MA(1988)Jordan derivations on prime rings Bull. Austral. Math. Soc. 37 321-323