共 33 条
- [21] Quasi-periodic wave solutions and asymptotic behavior for an extended (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2+1)$\end{document}-dimensional shallow water wave equation Advances in Difference Equations, 2016 (1)
- [22] Bäcklund transformations and soliton solutions for a (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics Nonlinear Dynamics, 2015, 80 (1-2) : 1 - 7
- [23] Exact solitary optical wave solutions and modulational instability of the truncated Ω-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega -$$\end{document}fractional Lakshamanan–Porsezian–Daniel model with Kerr, parabolic, and anti-cubic nonlinear laws Optical and Quantum Electronics, 2022, 54 (5)
- [24] Superposition behaviour between lump solutions and different forms of N-solitons (N→∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N\rightarrow \infty )$$\end{document} for the fifth-order Korteweg–de Vries equation Pramana, 2020, 94 (1)
- [25] Invariance properties, conservation laws, and soliton solutions of the time-fractional (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional new coupled ZK system in magnetized dusty plasmas Computational and Applied Mathematics, 2018, 37 (5) : 5981 - 6004
- [26] The Riemann–Bäcklund method to a quasiperiodic wave solvable generalized variable coefficient (2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{2+1}$$\end{document})-dimensional KdV equation Nonlinear Dynamics, 2017, 87 (4) : 2661 - 2676
- [27] Bilinear Bäcklund transformation, soliton and periodic wave solutions for a (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{(3 + 1)}$$\end{document}-dimensional variable-coefficient generalized shallow water wave equation Nonlinear Dynamics, 2017, 87 (4) : 2529 - 2540
- [28] Jacobi elliptic solutions, bright, compound bright-complex singular solitons of 3+1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 3+1\right) -$$\end{document} dimensional Wazwaz Kaur Boussinesq equation Optical and Quantum Electronics, 56 (8)
- [29] Bilinear auto-Bäcklund transformations and the hybrid localized wave solutions for the (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document})-dimensional B-type Kadomtsev–Petviashvili equation Optical and Quantum Electronics, 2023, 55 (12)
- [30] A comparative study of two fractional nonlinear optical model via modified G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G^2}\right)$$\end{document}-expansion method Optical and Quantum Electronics, 2024, 56 (2)