Soliton solutions of optical pulse envelope E(Z,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(Z,\tau)$$\end{document} with ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document}-time derivative

被引:0
作者
Renfei Luo
Khalida Faisal
Hadi Rezazadeh
Hijaz Ahmad
机构
[1] Guangdong University of Finance & Economics,International Business School
[2] Forman Christian College University,Department of Mathematics
[3] Amol University of Special Modern Technologies,Faculty of Engineering Technology
[4] Islamic University of Madinah,Department of Mathematics, Faculty of Science
[5] Operational Research Center in Healthcare,Near East University
[6] Gulf University for Science and Technology,Center for Applied Mathematics and Bioinformatics
[7] Lebanese American University,Department of Computer Science and Mathematics
关键词
The Sardar-subequation method; Nonlinear Schrödinger equation; Bright soliton; Dark-bright soliton; Soliton solutions;
D O I
10.1007/s11082-023-06146-0
中图分类号
学科分类号
摘要
The nonlinear Schrödinger equation (NLSE), which governs the propagation of pulses in optical fiber while including the effects of second, third, and fourth-order dispersion, is crucial for a comprehensive understanding of pulse propagation in optical communication systems. It assists engineers and scientists in optimizing and controlling the behavior of ultra-short pulses in complex and real-world optical systems. In this study, we solve the generalized NLSE for the pulse envelope E(z,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}(z, \tau )$$\end{document} with ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document}-time derivative by employing the Sardar subequation method (SSM). We obtain new soliton solutions corresponding to the relevant parameters of this technique. Additionally, conditions depending on the parameters of optical pulse envelope E(z,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}(z,\tau )$$\end{document} are provided for the existence of such soliton structures. Furthermore, the solitary wave solutions are expressed in the form of generalized trigonometric and hyperbolic functions. The dynamic behaviours of the solutions are revealed with specific values of the parameters that satisfy their respective existence criteria. The results indicate that SSM demonstrates high reliability, simplicity, and adaptability for use with various nonlinear equations.
引用
收藏
相关论文
共 33 条