Primitive divisors of sequences associated to elliptic curves with complex multiplication

被引:0
|
作者
Matteo Verzobio
机构
[1] Universitá Di Pisa,Dipartimento Di Matematica
来源
Research in Number Theory | 2021年 / 7卷
关键词
Elliptic curves; Primitive divisors; Elliptic divisibilitysequences; Endomorphisms; Complex multiplication;
D O I
暂无
中图分类号
学科分类号
摘要
Let P and Q be two points on an elliptic curve defined over a number field K. For α∈End(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in {\text {End}}(E)$$\end{document}, define Bα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document} to be the OK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_K$$\end{document}-integral ideal generated by the denominator of x(α(P)+Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x(\alpha (P)+Q)$$\end{document}. Let O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document} be a subring of End(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {End}}(E)$$\end{document}, that is a Dedekind domain. We will study the sequence {Bα}α∈O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$\end{document}. We will show that, for all but finitely many α∈O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \mathcal {O}$$\end{document}, the ideal Bα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document} has a primitive divisor when P is a non-torsion point and there exist two endomorphisms g≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ne 0$$\end{document} and f so that f(P)=g(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(P)= g(Q)$$\end{document}. This is a generalization of previous results on elliptic divisibility sequences.
引用
收藏
相关论文
共 50 条
  • [21] Density zero results for elliptic curves without complex multiplication
    Paulo Ribenboim
    Archiv der Mathematik, 1998, 70 : 293 - 296
  • [22] ON FIELDS OF DEFINITION OF TORSION POINTS OF ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION
    Dieulefait, Luis
    Gonzalez-Jimenez, Enrique
    Jimenez Urroz, Jorge
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) : 1961 - 1969
  • [23] Density zero results for elliptic curves without complex multiplication
    Ribenboim, P
    ARCHIV DER MATHEMATIK, 1998, 70 (04) : 293 - 296
  • [24] The Tate-Shafarevich group for elliptic curves with complex multiplication
    Coates, J.
    Liang, Z.
    Sujatha, R.
    JOURNAL OF ALGEBRA, 2009, 322 (03) : 657 - 674
  • [25] Sequences generated by elliptic curves
    Gezer, Betul
    Bizim, Osman
    ACTA ARITHMETICA, 2019, 188 (03) : 253 - 268
  • [26] Squarefree doubly primitive divisors in dynamical sequences
    Ghioca, Dragos
    Nguyen, Khoa D.
    Tucker, Thomas J.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 164 (03) : 551 - 572
  • [27] Sequences associated to elliptic curves with non-cyclic torsion subgroup
    Gezer, Betul
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (04): : 1458 - 1470
  • [28] ON THE NON-COMMUTATIVE MAIN CONJECTURE FOR ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION
    Bouganis, Thanasis
    Venjakob, Otmar
    ASIAN JOURNAL OF MATHEMATICS, 2010, 14 (03) : 385 - 416
  • [29] EXPLICIT CHARACTERIZATION OF THE TORSION GROWTH OF RATIONAL ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION OVER QUADRATIC FIELDS
    Gonzalez-Jimenez, Enrique
    GLASNIK MATEMATICKI, 2021, 56 (01) : 47 - 61
  • [30] A fast algorithm for multiplication on elliptic curves
    Li, H
    Zhang, CN
    CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2002, 27 (02): : 61 - 65