A finite element method for solving singular boundary-value problems

被引:0
作者
Yakovlev M.N. [1 ]
机构
[1] St.Petersburg Department, Steklov Mathematical Institute, St.Petersburg
关键词
Russia; Finite Element Method; Mathematical Institute; Steklov Mathematical Institute;
D O I
10.1007/s10958-008-0115-z
中图分类号
学科分类号
摘要
It is proved that under certain assumptions on the functions q(t) and f(t), there is one and only one function u0(t) {W21 o (a,b) at which the functional ∫ ab [u(t)2 dt + ∫ ab q(t)u2 (t)dt} - 2∫ ab {f(t)u(t)dt attains its minimum. An error bound for the finite element method for computing the function u0(t) in terms of q(t), f(t), and the meshsize h is presented. Bibliography: 3 titles. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:1998 / 2004
页数:6
相关论文
共 50 条
  • [41] Solving the fixed gravimetric boundary value problem by the finite element method using mapped infinite elements.
    Marek Macák
    Zuzana Minarechová
    Lukáš Tomek
    Róbert Čunderlík
    Karol Mikula
    Computational Geosciences, 2023, 27 : 649 - 662
  • [42] Mixed projection-mesh scheme of the finite-element method to solve boundary-value problems describing the non-isothermal processes of elastoplastic deformation
    Chirkov A.Yu.
    Strength of Materials, 2007, 39 (03) : 284 - 306
  • [43] Solving the fixed gravimetric boundary value problem by the finite element method using mapped infinite elements.
    Macak, Marek
    Minarechova, Zuzana
    Tomek, Lukas
    Cunderlik, Robert
    Mikula, Karol
    COMPUTATIONAL GEOSCIENCES, 2023, 27 (04) : 649 - 662
  • [44] The Finite Element Method and Its Computational Effectiveness for Solving Semilinear Singularly Perturbed Two-point Boundary Value Problems Using Shishkin Mesh
    Xiong, Zhiguang
    Chi, Anfeng
    Wang, Yi
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [45] Fuzzy finite element method for solving uncertain heat conduction problems
    Chakraverty, S.
    Nayak, S.
    COUPLED SYSTEMS MECHANICS, 2012, 1 (04): : 345 - 360
  • [46] A FINITE ELEMENT EIGENVALUE METHOD FOR SOLVING TRANSIENT HEAT CONDUCTION PROBLEMS
    Zhong, Jiakang
    Chow, Louis C.
    Chang, Won Soon
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 1992, 2 (01) : 243 - 259
  • [47] Coupling PEEC-finite element method for solving electromagnetic problems
    Tran, T. -S.
    Meunier, G.
    Labie, P.
    Le Floch, Y.
    Roudet, J.
    Guichon, J. -M.
    Marechal, Y.
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1330 - 1333
  • [48] A new method of boundary treatment in Heat conduction problems with finite element method
    Qin, Yueping
    Liu, Hongbo
    Zhang, Yanhui
    Qin, Chuan
    Zhang, Shengzhu
    ISMSSE 2011, 2011, 26
  • [49] On the edge element boundary element method/finite element method coupling for time harmonic electromagnetic scattering problems
    Dodig, Hrvoje
    Poljak, Dragan
    Cvetkovic, Mario
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (14) : 3613 - 3652
  • [50] A finite-element procedure based on a boundary-value approach for the evaluation of the electromagnetic exposure in biological phantoms
    Caorsi, S
    Bermani, E
    Massa, A
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (10) : 2346 - 2352