A finite element method for solving singular boundary-value problems

被引:0
作者
Yakovlev M.N. [1 ]
机构
[1] St.Petersburg Department, Steklov Mathematical Institute, St.Petersburg
关键词
Russia; Finite Element Method; Mathematical Institute; Steklov Mathematical Institute;
D O I
10.1007/s10958-008-0115-z
中图分类号
学科分类号
摘要
It is proved that under certain assumptions on the functions q(t) and f(t), there is one and only one function u0(t) {W21 o (a,b) at which the functional ∫ ab [u(t)2 dt + ∫ ab q(t)u2 (t)dt} - 2∫ ab {f(t)u(t)dt attains its minimum. An error bound for the finite element method for computing the function u0(t) in terms of q(t), f(t), and the meshsize h is presented. Bibliography: 3 titles. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:1998 / 2004
页数:6
相关论文
共 50 条
  • [21] A detailed quasigeoid model of the Hong Kong territories computed by applying a finite-element method of solving the oblique derivative boundary-value problem
    Cunderlik, Robert
    Tenzer, Robert
    Macak, Marek
    Zahorec, Pavol
    Papco, Juraj
    Nsiah Ababio, Albertini
    JOURNAL OF GEODETIC SCIENCE, 2023, 13 (01)
  • [22] Normalized finite element approximate inverse preconditioning for solving non-linear boundary value problems
    Gravvanis, GA
    Giannoutakis, KM
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1958 - 1962
  • [23] SOLVING DIRICHLET BOUNDARY-VALUE PROBLEMS ON CURVED DOMAINS BY EXTENSIONS FROM SUBDOMAINS
    Cockburn, Bernardo
    Solano, Manuel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01) : A497 - A519
  • [24] Neural network-augmented differentiable finite element method for boundary value problems
    Wang, Xi
    Yin, Zhen-Yu
    Wu, Wei
    Zhu, He-Hua
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2025, 285
  • [25] A finite element method scheme for boundary value problems with noncoordinated degeneration of input data
    Rukavishnikov V.A.
    Kuznetsova E.V.
    Numerical Analysis and Applications, 2009, 2 (03) : 250 - 259
  • [26] A simple finite element method for boundary value problems with a Riemann-Liouville derivative
    Jin, Bangti
    Lazarov, Raytcho
    Lu, Xiliang
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 293 : 94 - 111
  • [27] On the finite element method for elliptic problems with degenerate and singular coefficients
    Arroyo, Daniel
    Bespalov, Alexei
    Heuer, Norbert
    MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 509 - 537
  • [28] An ε-uniform finite element method for singularly perturbed two-point boundary value problems
    Song, Q. S.
    Yin, G.
    Zhang, Z. .
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2007, 4 (01) : 127 - 140
  • [29] An Effective Finite Element Method with Shifted Fractional Powers Bases for Fractional Boundary Value Problems
    Taibai Fu
    Changfa Du
    Yufeng Xu
    Journal of Scientific Computing, 2022, 92
  • [30] ON THE ERROR ESTIMATION OF THE FINITE ELEMENT METHOD FOR THE BOUNDARY VALUE PROBLEMS WITH SINGULARITY IN THE LEBESGUE WEIGHTED SPACE
    Rukavishnikov, V. A.
    Rukavishnikova, H. I.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (12) : 1328 - 1347