A finite element method for solving singular boundary-value problems

被引:0
作者
Yakovlev M.N. [1 ]
机构
[1] St.Petersburg Department, Steklov Mathematical Institute, St.Petersburg
关键词
Russia; Finite Element Method; Mathematical Institute; Steklov Mathematical Institute;
D O I
10.1007/s10958-008-0115-z
中图分类号
学科分类号
摘要
It is proved that under certain assumptions on the functions q(t) and f(t), there is one and only one function u0(t) {W21 o (a,b) at which the functional ∫ ab [u(t)2 dt + ∫ ab q(t)u2 (t)dt} - 2∫ ab {f(t)u(t)dt attains its minimum. An error bound for the finite element method for computing the function u0(t) in terms of q(t), f(t), and the meshsize h is presented. Bibliography: 3 titles. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:1998 / 2004
页数:6
相关论文
共 50 条
  • [11] Adaptive hp-finite element method for solving boundary value problems for the stationary reaction–diffusion equation
    N. D. Zolotareva
    E. S. Nikolaev
    Computational Mathematics and Mathematical Physics, 2015, 55 : 1484 - 1500
  • [12] On the application of the coupled finite-infinite element method to geodetic boundary-value problem
    Sprlak, Michal
    Faskova, Zuzana
    Mikula, Karol
    STUDIA GEOPHYSICA ET GEODAETICA, 2011, 55 (03) : 479 - 487
  • [13] A FINITE ELEMENT METHOD WITH SINGULARITY RECONSTRUCTION FOR FRACTIONAL BOUNDARY VALUE PROBLEMS
    Jin, Bangti
    Zhou, Zhi
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (05): : 1261 - 1283
  • [14] On the application of the coupled finite-infinite element method to geodetic boundary-value problem
    Michal Šprlák
    Zuzana Fašková
    Karol Mikula
    Studia Geophysica et Geodaetica, 2011, 55 : 479 - 487
  • [15] Galerkin's Finite Element Formulation of the System of Fourth-Order Boundary-Value Problems
    Iqbal, Shaukat
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1551 - 1560
  • [16] On the finite element method for solving the oblique derivative boundary value problems and its application in local gravity field modelling
    Minarechova, Zuzana
    Macak, Marek
    Cunderlik, Robert
    Mikula, Karol
    JOURNAL OF GEODESY, 2021, 95 (06)
  • [17] Adaptive hp-finite element method for solving boundary value problems for the stationary reaction-diffusion equation
    Zolotareva, N. D.
    Nikolaev, E. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (09) : 1484 - 1500
  • [18] On the finite element method for solving the oblique derivative boundary value problems and its application in local gravity field modelling
    Zuzana Minarechová
    Marek Macák
    Róbert Čunderlík
    Karol Mikula
    Journal of Geodesy, 2021, 95
  • [19] AN EFFICIENT FINITE ELEMENT-BOUNDARY INTEGRAL METHOD SOLVING ELECTROMAGNETIC SCATTERING PROBLEMS
    An, Xiang
    Lue, Zhi-Qing
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2009, 51 (09) : 2065 - 2071
  • [20] The Finite Element Method for Boundary Value Problems with Strong Singularity and Double Singularity
    Rukavishnikov, Viktor A.
    Rukavishnikova, Elena I.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, NAA 2012, 2013, 8236 : 110 - 121