Ranks of finite semigroups of one-dimensional cellular automata

被引:0
作者
Alonso Castillo-Ramirez
Maximilien Gadouleau
机构
[1] Durham University,School of Engineering and Computing Sciences
来源
Semigroup Forum | 2016年 / 93卷
关键词
Cellular automata; Finite semigroups; Smallest generating sets;
D O I
暂无
中图分类号
学科分类号
摘要
Since first introduced by John von Neumann, the notion of cellular automaton has grown into a key concept in computer science, physics and theoretical biology. In its classical setting, a cellular automaton is a transformation of the set of all configurations of a regular grid such that the image of any particular cell of the grid is determined by a fixed local function that only depends on a fixed finite neighbourhood. In recent years, with the introduction of a generalised definition in terms of transformations of the form τ:AG→AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau : A^G \rightarrow A^G$$\end{document} (where G is any group and A is any set), the theory of cellular automata has been greatly enriched by its connections with group theory and topology. In this paper, we begin the finite semigroup theoretic study of cellular automata by investigating the rank (i.e. the cardinality of a smallest generating set) of the semigroup CA(Zn;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(\mathbb {Z}_n; A)$$\end{document} consisting of all cellular automata over the cyclic group Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_n$$\end{document} and a finite set A. In particular, we determine this rank when n is equal to p, 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^k$$\end{document} or 2kp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^kp$$\end{document}, for any odd prime p and k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 1$$\end{document}, and we give upper and lower bounds for the general case.
引用
收藏
页码:347 / 362
页数:15
相关论文
共 23 条
[1]  
Araújo J(2009)The rank of the endomorphism monoid of a uniform partition Semigroup Forum 78 498-510
[2]  
Schneider C(2015)The rank of the semigroup of transformations stabilising a partition of a finite set Math. Proc. Camb. Philos. Soc. 159 339-353
[3]  
Araújo J(2010)Gardens of eden and amenability on cellular automata J. Eur. Math. Soc. 12 241-248
[4]  
Bentz W(1999)Amenable groups and cellular automata Ann. Inst. Fourier 49 673-685
[5]  
Mitchell JD(1987)On the ranks of certain finite semigroups of transformations Math. Proc. Camb. Phil. Soc. 101 395-403
[6]  
Schneider C(2014)The minimal number of generators of a finite semigroup Semigroup Forum 89 135-154
[7]  
Bartholdi L(2012)Large semigroups of cellular automata Ergod. Theory Dyn. Syst. 32 1991-2010
[8]  
Ceccherini-Silberstein TG(1990)Idempotent rank in finite full transformation semigroups Proc. R. Soc. Edinb. 114A 161-167
[9]  
Machì A(2005)Theory of cellular automata: a survey Theoret. Comput. Sci. 334 3-33
[10]  
Scarabotti F(1983)Witt vectors and the algebra of necklaces Adv. Math. 50 95-125