Understanding the microstructural evolution and fatigue behavior of aluminum 2319 fabricated by wire arc additive manufacturing

被引:1
|
作者
Kannan, A. Rajesh [1 ]
Pramod, R. [2 ]
Prakash, K. Sanjeevi [2 ]
Shanmugam, N. Siva [2 ]
Yoon, Jonghun [1 ,3 ]
Oliveira, J. P. [4 ,5 ]
机构
[1] Hanyang Univ, BK21 FOUR ERICA ACE Ctr, Dept Mech Engn, 55 Hanyangdaehak Ro, Ansan 15588, Gyeonggi Do, South Korea
[2] Natl Inst Technol, Dept Mech Engn, Tiruchirappalli 620015, Tamil Nadu, India
[3] AIDICOME Inc, 55 Hanyangdaehak Ro, Ansan 15588, Gyeonggi Do, South Korea
[4] Univ Nova Lisboa, NOVA Sch Sci & Technol, Dept Mech & Ind Engn, UNIDEMI, P-2829516 Caparica, Portugal
[5] NOVA Univ Lisbon, Sch Sci & Technol, Dept Mat Sci, CENIMAT i3N, Caparica, Portugal
基金
新加坡国家研究基金会;
关键词
WAAM; Aluminum alloy; ER2319; Microstructure; Mechanical properties; Fatigue; HIGH-CYCLE FATIGUE; MECHANICAL-PROPERTIES; ALLOY; POROSITY;
D O I
10.1007/s43452-024-00925-6
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Aluminum alloys have received substantial interest for the fabrication of complex and large size components for the aerospace industry via additive manufacturing processes. This work explores the fatigue performance of aluminum alloy 2319 fabricated by wire-based Directed Energy Deposition (DED) with Cold Metal Transfer (CMT) process, i.e., wire arc additive manufacturing (WAAM) technology. The as-deposited 2319 wall microstructure was composed by both columnar dendrites and equiaxed grains along the build direction (BD). Also, fine and coarse theta and theta ' precipitates were noticed in the WAAM printed 2319 wall due to repeated thermal cycles while fine precipitates were observed in wrought alloy. The microhardness measurements revealed a gradual decrease from the bottom to the top layers and varied between 65 and 86 HV. Tensile properties (yield strength, ultimate tensile strength, and elongation) measured in the horizontal and vertical directions were 99 +/- 4 MPa, 268 +/- 11 MPa 14.8 +/- 1.5% and 96 +/- 3 MPa, 257 +/- 9 MPa, and 15.6 +/- 2%, respectively. The WAAM 2319 fabricated in this work retained 72% of the strength of their AA2219-T62 wrought counterparts, which can be attributed to the large columnar grains that developed during the additive manufacturing process. The fatigue strength of WAAM 2319 specimen was 67 MPa, corresponding to 65% of the fatigue strength of AA2219-T62. Fracture surface analysis revealed the presence of small and large dimples, secondary micro-cracks, broken intermetallics, and inclusions. This work will provide novel insights and guidance for manufacturing near-net shape aluminum alloys by wire-based DED with improved tensile and fatigue properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Research on the Microstructure and Mechanical Properties of 2319 Aluminum Alloy Fabricated by Wire Arc Additive Manufacturing
    Shi, Yun
    Dong, Yinsheng
    Ding, Hui
    Li, Tao
    Ren, Fei
    Dai, Ting
    Bi, Yunjie
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [2] A Review of Aluminum Alloy Fabricated by Different Processes of Wire Arc Additive Manufacturing
    Wang, Zeli
    Zhang, Yuanbin
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2021, 27 (01): : 18 - 26
  • [3] Effect of arc oscillation on porosity and mechanical properties of 2319 aluminum alloy fabricated by CMT-wire arc additive manufacturing
    Wei, Yuhan
    Liu, Fencheng
    Liu, Fenggang
    Yu, Dong
    You, Qifan
    Huang, Chunping
    Wang, Zhitai
    Jiang, Wugui
    Lin, Xin
    Hu, Xiaoan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 3477 - 3490
  • [4] Fatigue Behavior of Austenitic Stainless Steel 347 Fabricated via Wire Arc Additive Manufacturing
    Duraisamy, R.
    Kumar, S. Mohan
    Kannan, A. Rajesh
    Shanmugam, N. Siva
    Sankaranarayanasamy, K.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (09) : 6844 - 6850
  • [5] Fatigue Behavior of Austenitic Stainless Steel 347 Fabricated via Wire Arc Additive Manufacturing
    R. Duraisamy
    S. Mohan Kumar
    A. Rajesh Kannan
    N. Siva Shanmugam
    K. Sankaranarayanasamy
    Journal of Materials Engineering and Performance, 2021, 30 : 6844 - 6850
  • [6] Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys
    Chang, Tianxing
    Fang, Xuewei
    Liu, Gang
    Zhang, Hongkai
    Huang, Ke
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 124 : 65 - 75
  • [7] Research on Temperature Field and Stress Evolution of 2319 Aluminum Alloy in Wire and Arc Additive Manufacturing
    Geng R.
    Cheng Y.
    Du J.
    Wei Z.
    Cailiao Daobao/Materials Reports, 2023, 37 (23):
  • [8] Bending fatigue properties of structural steel fabricated through wire arc additive manufacturing (WAAM)
    Ayan, Yusuf
    Kahraman, Nizamettin
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2022, 35
  • [9] Influence of arc mode on the microstructure and mechanical properties of 5356 aluminum alloy fabricated by wire arc additive manufacturing
    Jiangang, Pan
    Bo, Yuan
    Jinguo, Ge
    Yu, Ren
    Hongjun, Chen
    Liang, Zhang
    Hao, Lu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 : 1893 - 1907
  • [10] Normalized evaluation for wire arc additive manufacturing of 2319 aluminum alloy
    Lyu, Feiyue
    Wang, Leilei
    Dou, Zhiwei
    Liu, Shengxin
    Du, Mingzhen
    Gao, Chuanyun
    Zhan, Xiaohong
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (03): : 137 - 148