Raman study of cations’ distribution in ZnxMg1−xFe2O4 nanoparticles

被引:0
作者
S. W. da Silva
F. Nakagomi
M. S. Silva
A. Franco
V. K. Garg
A. C. Oliveira
P. C. Morais
机构
[1] Universidade de Brasília,Instituto de Física
[2] Universidade Federal de Goiás,Instituto de Física
来源
Journal of Nanoparticle Research | 2012年 / 14卷
关键词
Raman spectroscopy; Cubic ferrite; Magnetic nanoparticles; Cation’ distribution; Mössbauer spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
In a complementary way, Raman and Mössbauer spectroscopy were successfully employed to assess the cations’ distribution among the tetrahedral (A-site) and octahedral (B-site) sites of nonosized ZnxMg1−xFe2O4 (0 ≤ x ≤ 1) cubic ferrite structure, synthesized by combustion reaction method. Nanoparticles with little change in size distributions, in the 40 nm (x = 0.0) up to 42 nm (x = 1.0) were obtained. Mössbauer data indicated that as the Zn-content (x) increases in the range 0 ≤ x ≤ 1, the Fe3+ ion monotonically increases (decreases) the A-site (B-site) occupancy up to nearly equal values at the highest end x value. Analysis of the Raman data, however, confirms that the three highest energy modes around 650, 668 and 710 cm−1 are assigned to Zn–O (B-site), Fe–O (A-site) and Mg–O (A-site) vibrations, respectively. Additionally, in agreement with the Mössbauer data, the Raman data show that as the Zn-content (x) increases in the range 0 ≤ x ≤ 1, the occupancy of A-sites by Mg2+ ions monotonically reduces with concomitant increase of A- and B-sites occupancy by Fe3+ and Zn2+ ions, respectively. Indeed, combination of the two sets of spectroscopic data (Raman and Mössbauer) provides an effective protocol for assessing the cations’ distribution within the crystal structure of nanosized quaternary cubic ferrite samples running for instance from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left[ {{\text{Fe}}_{0.42}^{3 + } {\text{Mg}}_{0.58}^{2 + } } \right]^{A} \left[ {{\text{Zn}}_{0.20}^{2 + } {\text{Mg}}_{0.22}^{2 + } {\text{Fe}}_{1.58}^{3 + } } \right]^{B} O_{4}^{2 - } $$\end{document} at x = 0.2 up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left[ {{\text{Fe}}_{1.0}^{3 + } } \right]^{A} \left[ {{\text{Zn}}_{0.60}^{2 + } {\text{Mg}}_{0.40}^{2 + } {\text{Fe}}_{1.0}^{3 + } } \right]^{B} {\text{O}}_{4}^{2 - } $$\end{document} at x = 0.6.
引用
收藏
相关论文
共 126 条
[1]  
Antic B(2010)Magnetization enhancement in nanostructured random type MgFe(2)O(4) spinel prepared by soft mechanochemical route J Appl Phys 107 043525-2369
[2]  
Jovic N(2008)Temperature dependence of the cation distribution in ZnFe J Solid State Chem 181 2364-174
[3]  
Pavlovic MB(2006)O J Magn Magn Mater 301 171-5424
[4]  
Kremenovic A(2010) measured with high temperature neutron diffraction J Appl Phys 107 09B503-3164
[5]  
Manojlovic D(1987)Mossbauer study in zinc ferrite nanoparticles Phys Rev B 35 5421-202
[6]  
Vucinic-Vasic M(1991)Effect of the Zn content in the structural and magnetic properties of Zn Phys Rev A 43 3161-1660
[7]  
Nikolic AS(2007)Mg J Magn Magn Mater 308 198-499
[8]  
Braestrup F(1988)Fe Mater Res Bull 23 1651-3235
[9]  
Hauback BC(2007)O J Magn Magn Mater 311 494-137
[10]  
Hansen KK(2002) mixed ferrites monitored by Raman and Mössbauer spectroscopies Phys Rev B 65 104430-1790