On a class of operators related to second-order differential equations

被引:0
作者
N. N. Konechnaya
K. A. Mirzoev
机构
[1] M. V. Lomonosov Pomor State University,Department of Mechanics and Mathematics
[2] Moscow State University,undefined
来源
Russian Journal of Mathematical Physics | 2006年 / 13卷
关键词
Differential Equation; Differential Operator; Spectral Property; Fundamental System; Homogeneous Differential Equation;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we find a class of linear homogeneous differential equations of order n + 1 (n > 1) whose fundamental system of solutions is constructed from the fundamental system of solutions of a second-order differential equation. The spectral properties of differential operators generated by these differential expressions are investigated. In particular, sufficient conditions are obtained for the coefficients of a second-order differential equation under which the case of maximal deficiency indices is realized.
引用
收藏
页码:55 / 63
页数:8
相关论文
共 5 条
[1]  
Mirzoev K. A.(2000)On a Class of Operators Associated with Second-Order Differential Equations Uspekhi Mat. Nauk 55 147-148
[2]  
Hartman P.(1958)Unrestricted Rend. Circ. Mat. Palermo 7 123-142
[3]  
Mirzoev K. A.(1991)-Parameter Families Uspekhi Mat. Nauk 46 161-162
[4]  
Mirzoev K. A.(1990)Cauchy Function and Mat. Zametki 47 77-82
[5]  
Mirzoev K. A.(1991)-Properties of Solutions of Quasidifferential Equations Mat. Zametki 50 105-115