Numerical study of heat transfer performance of MHD Al2O3-Cu/water hybrid nanofluid flow over inclined surface

被引:0
作者
Feroz Ahmed Soomro
Muhammad Usman
Shreen El-Sapa
Muhammad Hamid
Rizwan Ul Haq
机构
[1] Quaid-e-Awam University of Engineering,Department of Basic Sciences and Related Studies
[2] Science and Technology,Department of Mathematics
[3] National University of Modern Languages,Department of Mathematical Sciences, College of Science
[4] Princess Nourah Bint Abdulrahman University,School of Mathematics and Statistics, Science and Technology
[5] Nanjing University of Information,Department of Electrical Engineering
[6] Bahria University,undefined
来源
Archive of Applied Mechanics | 2022年 / 92卷
关键词
Heat transfer enhancement; Hybrid nanofluid; Boundary layer flow; Magnetohydrodynamic; Spectral method; Numerical solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, magnetohydrodynamic hybrid nanofluid is considered to study the heat transfer performance due to stretching of inclined surface. The stretching surface is considered under the effects of magnetic field along the normal direction. The surface is inclined such that it makes an angle of 450\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${45}^{0}$$\end{document} with x-axis\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x-axis$$\end{document}. The working nanofluid is composed of water and fraction of Al2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Al}}_{2}{\mathrm{O}}_{3}$$\end{document} and Cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Cu}$$\end{document} nanoparticles. The flow is generated due to stretching of surface with constant velocity. Set of nonlinear partial differential equations, including continuity, momentum and energy equations, governs the flow and heat transfer. Similarity transformation technique is applied to convert them to nondimensional form. Transformation gives rise to number of physical parameters, such as Eckert number, suction parameter, convective parameter, and magnetic parameter. The numerical solution is sought using Picard Chelyshkov polynomial method, to evaluate the flow and heat transfer phenomenon against the range of emerging physical parameter. The study revealed that, in comparison with the simple Cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Cu}$$\end{document}/water nanofluid, heat transfer rate is augmented utilizing Al2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Al}}_{2}{\mathrm{O}}_{3}$$\end{document}-Cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Cu}$$\end{document}/water hybrid nanofluid.
引用
收藏
页码:2757 / 2765
页数:8
相关论文
共 154 条
[1]  
Masuda H(1993)Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles Netsu. Bussei. 7 227-233
[2]  
Ebata A(2005)Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol Korea-Austral. Rheol. J. 17 35-40
[3]  
Teramae K(2010)Applications of nanofluids: current and future Adv. Mech. Eng. 78 718-720
[4]  
Hishinuma N(2001)Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles Appl. Phys. Lett. 125 567-574
[5]  
Kwak K(2003)Temperature dependence of thermal conductivity enhancement for nanofluids J. Heat Transf. 124 706-714
[6]  
Kim C(2018)Shape effects of MoS Int. J. Heat Mass Transf. 7 3107-3115
[7]  
Wong KV(2017) nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach Res. Phys. 243 682-688
[8]  
Leon OD(2017)MHD convective flow of magnetite-Fe 3 O 4 nanoparticles by curved stretching sheet J. Mol. Liq. 26 193-199
[9]  
Eastman JA(2015)Effects of aligned magnetic field and CNTs in two different base fluids over a moving slip surface Adv. Powder Technol. 38 666-692
[10]  
Choi SUS(2022)Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces Numer. Methods Part. Differ. Equ. 126 105395-287