Finite-Dimensional Irreducible Modules of the Universal Askey–Wilson Algebra

被引:0
作者
Hau-Wen Huang
机构
[1] Hebrew University,Einstein Institute of Mathematics
来源
Communications in Mathematical Physics | 2015年 / 340卷
关键词
Quantum Group; Module Versus; Universal Property; Association Scheme; Irreducible Module;
D O I
暂无
中图分类号
学科分类号
摘要
Since the introduction of Askey–Wilson algebras by Zhedanov in 1991, the classification of the finite-dimensional irreducible modules of Askey–Wilson algebras remains open. A universal analog ▵q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\triangle_q}$$\end{document} of the Askey–Wilson algebras was recently studied. In this paper, we consider a family of infinite-dimensional ▵q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\triangle_q}$$\end{document}-modules. By the universal property of these ▵q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\triangle_q}$$\end{document}-modules, we classify the finite-dimensional irreducible ▵q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\triangle_q}$$\end{document}-modules when q is not a root of unity.
引用
收藏
页码:959 / 984
页数:25
相关论文
共 63 条
  • [1] Alnajjar H.(2011)Leonard pairs associated with the equitable generators of the quantum algebra Linear Multilinear Algebra 59 1127-1142
  • [2] Askey R.(1985)( Mem. Am. Math. Soc. 54 1-55
  • [3] Wilson J.(2005)) Nucl. Phys. B 705 605-619
  • [4] Baseilhac P.(1994)Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials Phys. Rev. A 50 3700-3709
  • [5] Bonatsos D.(2007)An integrable structure related with tridiagonal algebras Linear Algebra Appl. 424 510-539
  • [6] Daskaloyannis C.(1990)Deformed oscillator algebras for two-dimensional quantum superintegrable systems J. Phys. A Math. Gen. 23 L183-L187
  • [7] Kokkotas K.(2014)Modular Leonard triples Proc. Am. Math. Soc. 142 1545-1560
  • [8] Curtin B.(2014)Quantum deformations of J. Phys. A: Math. Theor. 47 205202-20
  • [9] Fairlie D.(1992)The Bannai–Ito polynomials as Racah coefficients of the Ann. Phys. 217 1-L1032
  • [10] Genest V.(1992) algebra J. Phys. A: Math. Gen. 25 L1029-L359