Fundamentals of fluctuation metrology

被引:0
作者
S. F. Timashev
Yu. S. Polyakov
S. G. Lakeev
P. I. Misurkin
A. I. Danilov
机构
[1] Russian Academy of Sciences,Institute of Laser and Information Technologies
[2] Karpov Research Institute of Physical Chemistry,Semenov Institute of Chemical Physics
[3] USPolyResearch,Frumkin Institute of Physical Chemistry and Electrochemistry
[4] Russian Academy of Sciences,undefined
[5] Russian Academy of Sciences,undefined
来源
Russian Journal of Physical Chemistry A | 2010年 / 84卷
关键词
Metrological Characteristic; Chaotic Signal; Wolf Number; Daily Series; Difference Moment;
D O I
暂无
中图分类号
学科分类号
摘要
The possibility in principle of extending metrological concepts to the characteristics of complex objects, the primary information about the state or structure of which is presented in the form of complex chaotic dependences and cannot be expressed using standard metrological images such as directly measured time and length and other dimensional values, is shown. To correctly characterize the dynamic state of such complex objects, including states of objects during nonstationary evolution, or the special features of structures formed under the conditions of external actions of various intensities, it is necessary, first, to introduce autocorrelation dependences averaged over time or spatial intervals on the basis of measured dynamic variables and, next, to use these dependences to find sets of information parameters, which can be presented as metrological characteristics of the dynamic state under study or spatial image to be analyzed. The phenomenological basis of the corresponding analysis is provided by flicker-noise spectroscopy with its possibilities of developing procedures and algorithms that can be used to obtain metrological characteristics over various frequency (time and spatial) ranges of the signals analyzed. This is the basis on which unity of metrological characteristic measurements with a determined uncertainty (error) in measurements can be achieved, standards and reference samples of fluctuation metrology can be created, and methods for the transfer of standard parameters from standards to reference samples and then to working measurement instruments can be developed. This opens up the possibility for solving many practical problems of microelectronics, energetics, nanoindustry, chemical technology, which include standardization of the state of complex systems and articles of various functional purposes, and the quality of products created.
引用
收藏
页码:1807 / 1825
页数:18
相关论文
共 51 条
[1]  
Zhigal’skii G. P.(2005)Atomic Force Microscope Radiotekh. Elektron. 50 517-undefined
[2]  
Simoen E.(1999)undefined Semicond. Sci. Technol. 14 R61-undefined
[3]  
Claeys C.(2005)undefined Elektrokhimiya 41 1226-undefined
[4]  
Kanevskii L. S.(2000)undefined Teor. Osn. Khim. Tekhnol. 34 339-undefined
[5]  
Grafov B. M.(1999)undefined Chem. Eng. Sci. 54 2545-undefined
[6]  
Astaf’ev M. G.(1999)undefined Chem. Eng. Sci. 54 2199-undefined
[7]  
Timashev S. F.(1999)undefined Chem. Eng. Sci. 54 2047-undefined
[8]  
Cassanallo M.(1999)undefined Chem. Eng. Sci. 54 2113-undefined
[9]  
Larachi F.(1986)undefined Phys. Rev. Lett. 56 930-undefined
[10]  
Legros R.(2006)undefined Elektrokhimiya 42 480-undefined