Boundary Behavior of Large Solutions to the Infinity Laplace Equations on the Half-Line

被引:0
作者
Ling Mi
Chuan Chen
机构
[1] Qilu University of Technology (Shandong Academy of Sciences),School of Mathematics and Statistics
[2] Qilu University of Technology (Shandong Academy of Sciences),Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center
来源
Mathematical Notes | 2023年 / 114卷
关键词
one-dimensional infinity Laplacian; blow-up solution; asymptotic behavior;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:883 / 894
页数:11
相关论文
共 32 条
[1]  
Aronsson G.(1967)Extension of functions satisfying Lipschitz conditions Ark. Mat. 6 551-561
[2]  
Crandall M. G.(1983)Viscosity solutions and Hamilton–Jacobi equations Trans. Amer. Math. Soc. 277 1-42
[3]  
Lions P. L.(1984)Some properties of viscosity solutions of Hamilton–Jacobi equations Trans. Amer. Math. Soc. 282 487-502
[4]  
Crandall M. G.(1993)Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient Arch. Ration. Mech. Anal. 123 51-74
[5]  
Evans L. C.(2004)A tour of the theory of absolute minimizing functions Bull. Amer. Math. Soc. 41 439-505
[6]  
Lions P. L.(2008)Inhomogeneous infinity Laplace equation Adv. Math. 217 1838-1868
[7]  
Jensen R. R.(2008)A PDE perspective of the normalized infinity Laplacian Commun. Partial Differ. Equations 33 1788-1817
[8]  
Aronson G.(2011)On solutions to Dirichlet problems involving the infinity-Laplacian Adv. Calc. Var. 4 445-487
[9]  
Crandall M. G.(2012)Inhomogeneous dirichlet problems involving the infinity laplacian Adv. Differ. Equ. 17 225-266
[10]  
Juutinen P.(2012)Boundary blow-up solutions to degenerate elliptic equations with non-monotone inhomogeneous terms Nonlinear Anal. 75 3249-3261